Summary

从造血器官中分离基质细胞

Published: January 26, 2024
doi:

Summary

在这里,我们提出了能够从小鼠骨骼、骨髓、胸腺和人胸腺组织中分离基质细胞的方案,这些组织与单细胞多组学兼容。

Abstract

单细胞测序使得造血器官基质中异质细胞群的定位成为可能。这些方法提供了一个视角,通过它来研究以前未解决的稳态异质性,以及由外在应激或衰老过程中诱导的细胞类型表示的变化。在这里,我们提出了从小鼠和人胸腺以及小鼠骨骼和骨髓中分离高质量基质细胞群的逐步方案。通过这些方案分离的细胞适用于生成高质量的单细胞多组学数据集。本文将讨论样本消化、造血谱系耗竭、FACS分析/分选的影响,以及这些因素如何影响与单细胞测序的兼容性。通过FACS谱的示例,表明测序后分析中成功和低效的解离以及下游基质细胞产量,为用户提供了可识别的指针。考虑基质细胞的特定要求对于获得高质量和可重复的结果至关重要,这些结果可以推动该领域的知识发展。

Introduction

在健康的成年人中,血细胞的从头产生发生在骨髓和胸腺中。这些部位的基质细胞对于维持造血至关重要,但基质占组织的不到 1%,2,3,4因此,获得支持基质的造血干细胞的纯分离株是一个重大挑战,特别是对于单细胞多组学而言,需要权宜之计才能获得高质量的样本。不同消化混合物的成分可能会干扰多组学分析中的某些步骤5,6。本文介绍的方案详细介绍了从骨髓和胸腺组织中分离出多种基质细胞的方法。

骨髓和胸腺中基质成分的扰动会导致血细胞发育的严重破坏,并可能导致恶性肿瘤 7,8,9。在细胞毒性调理和骨髓移植后,支持基质的造血功能受到损害,导致维持造血干细胞和祖细胞 (HSPC) 的细胞因子和生长因子的分泌减少2,10,11。此外,衰老会影响骨髓和胸腺基质细胞,可能导致造血表型老化。胸腺是第一个经历广泛的年龄相关退化的器官。早在青春期开始时,脂肪和纤维化组织就开始取代 T 细胞支持基质12,13。在骨髓中,脂肪细胞含量随着年龄的增长而增加,血管和骨内膜壁龛显着重塑14,15,16

为了能够在多种应激状态下以及人和小鼠组织的胸腺中研究造血支持基质,我们优化了先前发表的消化方案1281718。这些方案确保了细胞的高效和可重复的分离,并且它们与单细胞RNA测序(scRNAseq)和其他类型的多组学兼容。

Protocol

所有与人体组织有关的工作都是在马萨诸塞州总医院内部审查委员会 (IRB) 批准后进行的。所有动物程序均按照马萨诸塞州总医院机构动物护理和使用委员会 (IACUC) 指南进行。本研究采用C57Bl/6只小鼠,年龄8-10周龄,雄性和雌性均为小鼠。这些动物是从商业来源获得的(见 材料表)。 1.鼠胸腺组织的制备 准备以下缓冲液和溶液。培?…

Representative Results

这些方案从胸腺和骨髓中产生可重复的基质细胞品种,适用于流式细胞术分析,以及单细胞多组学,如scRNA测序。小鼠胸腺组织在应激源的作用下经历了显著的重塑,例如骨髓移植前的细胞毒性调节或自然衰老过程。因此,在这两种情况下,胸腺细胞性都急剧降低(图1A)。虽然来自8周大的野生型小鼠的胸腺含有大约1亿个细胞,但2岁小鼠的细胞密度可以预期是其中的一半,…

Discussion

造血器官中的基质细胞对于正常造血至关重要,而造血基质扰动可导致造血维持和对应激反应的严重损害 9,23,24。深入了解造血基质细胞对于理解血液疾病至关重要 7,9,10,24 以及开发对抗它们的治疗方法的能力 25,26</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们得到了马萨诸塞州总医院的HSCI-CRM流式细胞术设施和哈佛大学Bauer Core设施的专家技术支持。T.K 和 K. G 得到了瑞典研究委员会的支持,C.M. 得到了德国研究基金会的支持。我们感谢 Sergey Isaev 和 I-Hsiu Lee 在分析单细胞 RNA 测序数据方面的帮助。

Materials

0.25% Trypsin-EDTA Thermo Fisher Scientific 25200-072
7AAD (7-aminoactinomycin D) BD Biosciences 559925
Anti-Human Lineage Cocktail 3-FITC BD Biosciences 643510
Bovine Serum Albumin Millipore Sigma A9647
C57Bl/6 mice Jackson 664 Males or females, 8-12 weeks old
Calcein  Fisher Scientific 65-0853-78
Collagenase IV Millipore Sigma C5138
Corning Sterile Cell Strainers, White, Mesh Size: 70 µm Fisher Scientific 08-771-2
DAPI (4',6-Diamidino-2-Phenylindole, Dilactate) Biolegend 422801
Dispase II Thermo Fisher Scientific 17105041
Dnase I Solution Thermo Fisher Scientific 90083  2500 U/mL
Easysep mouse streptavidin RapidSpheres Isolation kit StemCell Technologies 19860
Fetal Bovine Serum Gibco A31605-01 Qualified One Shot
Human Fc Block BD Biosciences 564220
Liberase TM  Millipore Sigma 5401127001 Research Grade
Medium 199 Gibco 12350
Mouse anti-human CD235a-BV77 BD Biosciences 740785
Mouse anti-human CD31-PE/Dazzle594 Biolegend 303130
Mouse anti-human CD45-BV77 Biolegend 304050
Mouse anti-human CD4-BV605 BD Biosciences 562658
Mouse anti-human CD66b-FITC BD Biosciences 555724
Mouse anti-human CD8-APC/Cy7 BD Biosciences 557760
Mouse anti-human EpCam-BV421 Biolegend 324220
Protector RNase Inhibitor Millipore Sigma 3335402001
Rat anti-mouse CD105-PE /dazzle594 Biolegend 120424
Rat anti-mouse CD11b-Biotin Biolegend 101204
Rat anti-mouse CD140a-APC Fisher Scientific 17-1401-81
Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) BD Biosciences 553142
Rat anti-mouse CD31-BUV737 BD Biosciences 612802
Rat anti-mouse CD31-BV421 Biolegend 102424
Rat anti-mouse CD3-Biotin Biolegend 100244
Rat anti-mouse CD45.2-Biotin Biolegend 109804
Rat anti-mouse CD45-PE/Cy7 Biolegend 103114
Rat anti-mouse CD45-PE/Cy7 Biolegend 103114
Rat anti-mouse CD45R/B220-Biotin Biolegend 103204
Rat anti-mouse CD51-PE Biolegend 104106
Rat anti-mouse EpCam-BV711 BD Biosciences 563134
Rat anti-mouse Ly-6A/E(Sca-1)-AF700 Biolegend 108142
Rat anti-mouse Ly-6G/Ly-6C(Gr1)-Biotin Biolegend 108404
Rat anti-mouse Ter119-Biotin Biolegend 116204
Rat anti-mouse Ter119-PE Biolegend 116208
Rat anti-mouse Ter119-PE/Cy7 Biolegend 116222
Stemxyme  Worthington Biochemical LS004107

References

  1. Baryawno, N., et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 177 (7), 1915-1932 (2019).
  2. Severe, N., et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell. 25 (4), 570-583 (2019).
  3. Han, J., Zuniga-Pflucker, J. C. A 2020 view of thymus stromal cells in t cell development. J Immunol. 206 (2), 249-256 (2021).
  4. Park, J. E., et al. A cell atlas of human thymic development defines t cell repertoire formation. Science. 367 (6480), (2020).
  5. Denisenko, E., et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus rna-seq workflows. Genome Biol. 21 (1), 130 (2020).
  6. Lischetti, U., et al. Dynamic thresholding and tissue dissociation optimization for cite-seq identifies differential surface protein abundance in metastatic melanoma. Commun Biol. 6 (1), 830 (2023).
  7. Ding, L., Saunders, T. L., Enikolopov, G., Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 481 (7382), 457-462 (2012).
  8. Mendez-Ferrer, S., et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 466 (7308), 829-834 (2010).
  9. Raaijmakers, M. H., et al. progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 464 (7290), 852-857 (2010).
  10. Himburg, H. A., et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell. 23 (3), 370-381 (2018).
  11. Zhou, B. O., et al. marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting scf. Nat Cell Biol. 19 (8), 891-903 (2017).
  12. Steinmann, G. G. Changes in the human thymus during aging. Curr Top Pathol. 75, 43-88 (1986).
  13. Steinmann, G. G., Klaus, B., Muller-Hermelink, H. K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol. 22 (5), 563-575 (1985).
  14. Ambrosi, T. H., et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 20 (6), 771-784 (2017).
  15. Ho, Y. H., et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. 25 (3), 407-418 (2019).
  16. Kusumbe, A. P., et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature. 532 (7599), 380-384 (2016).
  17. Seach, N., Wong, K., Hammett, M., Boyd, R. L., Chidgey, A. P. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods. 385 (1-2), 23-34 (2012).
  18. Stoeckle, C., et al. Isolation of myeloid dendritic cells and epithelial cells from human thymus. J Vis Exp. (79), e50951 (2013).
  19. Gustafsson, K., Scadden, D. T. Isolation of thymus stromal cells from human and murine tissue. Methods Mol Biol. 2567, 191-201 (2023).
  20. Amend, S. R., Valkenburg, K. C., Pienta, K. J. Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp. (110), e53936 (2016).
  21. Zhu, H., et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc. 5 (3), 550-560 (2010).
  22. Calvi, L. M., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425 (6960), 841-846 (2003).
  23. Kode, A., et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 506 (7487), 240-244 (2014).
  24. Agarwal, P., et al. Mesenchymal niche-specific expression of cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell. 24 (5), 769-784 (2019).
  25. Duarte, D., et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in aml. Cell Stem Cell. 22 (1), 64-77 (2018).
  26. O’flanagan, C. H., et al. Dissociation of solid tumor tissues with cold active protease for single-cell rna-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20 (1), 210 (2019).
  27. Stoeckius, M., et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19 (1), 224 (2018).

Play Video

Cite This Article
Kristiansen, T., Mayerhofer, C., Gustafsson, K., Scadden, D. T. Stromal Cell Isolation From Hematopoietic Organs. J. Vis. Exp. (203), e66231, doi:10.3791/66231 (2024).

View Video