Summary

荧光染色脂滴分析与3D重建,用于肝脂肪变性评估

Published: June 02, 2023
doi:

Summary

在本文中,我们展示了一种优化的基于BODIPY 493 / 503荧光的方案,用于肝组织中的脂滴表征。通过使用正交投影和3D重建,荧光团可以成功区分微泡和大泡脂肪变性,并且可能代表用于肝脂肪变性评估的经典组织学方案的补充方法。

Abstract

脂滴(LDs)是介导脂质储存的特化细胞器,在抑制脂毒性和预防游离脂肪酸(FAs)引起的功能障碍方面起着非常重要的作用。鉴于肝脏在人体脂肪代谢中的关键作用,肝脏一直受到微泡和大泡肝脂肪变性形式的LDs细胞内积累的威胁。LD的组织学表征通常基于脂溶性重氮染料,例如油红O(ORO)染色,但许多缺点一直阻碍了该分析在肝脏标本中的使用。最近,亲脂性荧光团 493/503 因其快速吸收和积累到中性脂滴核心中而变得流行用于可视化和定位 LD。尽管大多数应用在细胞培养中都有很好的描述,但很少有证据表明亲脂性荧光团探针在组织样品中可靠地用作LD成像工具。在本文中,我们提出了一种优化的基于硼二吡咯甲烷(BODIPY)493/503的方案,用于评估来自高脂肪饮食(HFD)诱导的肝脂肪变性动物模型的肝脏标本中的LD。该协议涵盖肝脏样本制备、组织切片、BODIPY 493/503 染色、图像采集和数据分析。我们证明了HFD喂养时肝LD的数量,强度,面积比和直径增加。使用正交投影和3D重建,可以观察到LD核心中性脂质的全部含量,这些脂质显示为近球形液滴。此外,使用荧光团BODIPY 493/503,我们能够区分微囊泡(1μm<d≤3μm),中间囊泡(3μm9μm),从而成功区分微泡和大泡脂肪变性。总体而言,该基于荧光的BODIPY 493/503方案是肝LD表征的可靠且简单的工具,可能是经典组织学方案的补充方法。

Introduction

脂滴(LDs),通常被视为能量库,是介导脂质储存的特化细胞器,它们包括疏水性中性脂质核心,主要含有胆固醇酯和甘油三酯(TG),由磷脂单层封装1,23

LD生物发生发生在内质网(ER)中,从三酰基甘油(TAG)和甾醇酯的合成开始。中性脂质以低浓度在ER双层的小叶之间扩散,但聚结成油状体,当其细胞内浓度增加时,油状体从ER膜生长并芽成近球形液滴4。随后,来自ER双层和细胞质的蛋白质,特别是脂周(PLIN)蛋白家族,易位到LD的表面以促进出芽56789

通过新的脂肪酸合成和LD融合或聚结,LD长成不同的大小。因此,不同细胞类型中LD的大小和数量差异很大。小液滴(直径300-800nm),被称为初始LD(iLDs),几乎可以由所有细胞形成4。在LD形成的后期,大多数细胞能够将一些iLD转化为更大的iLDs-膨胀LDs(eLDs直径>1μm)。然而,只有特定的细胞类型,如脂肪细胞和肝细胞,才有能力形成巨大或超大的LD(直径可达数十微米)410

LDs在调节细胞脂质代谢,抑制脂毒性,预防ER应激,线粒体功能障碍以及最终由游离脂肪酸(FAs)引起的细胞死亡方面起着非常重要的作用11121314。此外,LDs还与基因表达,病毒复制蛋白隔离以及膜运输和信号传导的调节有关151617。因此,LD生物发生的失调是与代谢综合征,肥胖,2型糖尿病(T2DM)和/或动脉硬化相关的慢性疾病的标志,仅举几例181920

肝脏作为代谢中枢,主要负责通过储存和处理脂质的脂质代谢,因此,它不断受到脂毒性的威胁21。肝脂肪变性(HS)是一系列进行性肝病的共同特征,其特征是细胞内脂质以胞质LD的形式过度积累,最终可能导致肝脏代谢功能障碍,炎症和晚期非酒精性脂肪性肝病22232425.当极低密度脂蛋白(VLDL)中脂肪酸氧化和作为甘油三酯输出的速率低于血浆和从头脂肪酸合成中摄取肝脂肪酸的速率时,就会发生HS26。脂质的肝脏蓄积通常以两种形式发生 – 微泡和大泡脂肪变性 – 并且它们显示出不同的细胞结构特征27。通常,微泡性脂肪变性的特征是存在分散在整个肝细胞中的小LD,细胞核位于中央,而大泡性脂肪变性的特征是存在单个大LD,该LD占据肝细胞的大部分,将细胞核推向外围2829.值得注意的是,这两种类型的脂肪变性经常一起发现,目前尚不清楚这两种LD模式如何影响疾病发病机制,因为证据仍然不一致31323334然而,这种类型的分析通常被用作临床前和临床研究中的“参考标准”,以了解LD的动态行为并表征肝脂肪变性29343536

肝活检是诊断和分级HS的金标准,通过组织学苏木精和伊红(H&E)分析常规评估,其中脂质液滴被评估为H&E染色肝脏切片中的未染色液泡37。虽然可以接受大泡脂肪变性评估,但这种类型的染色通常会缩小微泡脂肪变性的评估范围38。脂溶性重氮染料,如油红O(ORO),通常与明场显微镜结合使用以分析细胞内脂质储存,但这些仍然有许多缺点:(i)在染色过程中使用乙醇或异丙醇,尽管细胞是固定的,但这通常会导致天然LD的破坏和偶尔的融合39;(ii)耗时,因为ORO溶液由于保质期有限而需要新鲜粉末溶解和过滤,从而导致结果不太一致;(iii)以及ORO不仅染色脂滴,而且经常高估肝脂肪变性的事实38

因此,细胞渗透性亲脂性荧光团(如尼罗红)已被用于活样品或固定样品中,以克服上述一些限制。然而,细胞脂质细胞器标记的非特异性性质反复缩小LD评估的范围40。此外,尼罗河红的光谱特性根据环境的极性而变化,这通常会导致光谱偏移41

亲脂性荧光探针1,3,5,7,8-五甲基-4-硼-3a,4adiaza-s-茚达烯(激发波长:480nm;最大发射波长:515nm;BODIPY 493/503)表现出疏水性特性,允许其被细胞内LD快速吸收,积聚在脂滴核心中,随后发出亮绿色荧光12。与尼罗红不同,BODIPY 493/503对环境极性不敏感,并且已被证明具有更高的选择性,因为它在LD成像中显示出高亮度。为了染色中性LD,该染料可用于活细胞或固定细胞,并成功与其他染色和/或标记方法偶联42。染料的另一个优点是它几乎不需要努力地放入溶液中并且是稳定的,因此无需为每个实验新鲜制备42。尽管BODIPY 493/503探针已成功用于可视化细胞培养物中LD的定位和动力学,但一些报告也证明了这种染料在组织中的LD成像工具的可靠使用,包括人股外侧肌43,大鼠比目鱼肌42和小鼠肠道44

在本文中,我们提出了一种优化的基于 BODIPY 493/503 的方案,作为评估肝脂肪变性动物模型中肝脏标本中 LD 数、面积和直径的替代分析方法。该程序包括肝脏样本制备、组织切片、染色条件、图像采集和数据分析。

Protocol

本研究中执行的所有动物程序均已获得科英布拉临床和生物医学研究所(iCBR)动物福利机构(ORBEA,#9 / 2018)的批准,并符合动物护理国家和欧洲指令以及ARRIVE指南。 1. 实验设计 在温度(22°C±1°C),湿度(50%-60%)和光照(12小时明暗循环)的受控环境条件下,在通风笼中配对13周龄雄性Wistar大鼠,并 随意 获得自来水和标准啮齿动物食物。 <li…

Representative Results

该技术的成功实施应导致清晰的脂滴染色,以同时表征LD形态(基于3D重建的形状和脂质核心密度)以及它们的空间分布,每总面积的数量和平均大小(使用上述管道进行评估, 图1)。 图 1:使用细胞分析器处理示例 图像?…

Discussion

这种基于荧光的 BODIPY 493/503 LD 评估方案旨在开发一种用于评估肝脂肪变性的新型成像方法。鉴于肥胖与脂肪肝之间的强相关性,采用西式高脂肪饮食建立肝脂肪变性动物模型26。定量甘油三酯比色测定试剂盒证实了肝TG含量的强劲增加,这表明HFD喂养的动物的肝脏脂质沉积情况增加。随后,在低放大倍率下,用荧光探针BODIPY 493/503观察LD积累的程度。正如预期的那样,BODIPY 493/503 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由国家和欧洲基金 通过 葡萄牙科学技术基金会(FCT),欧洲区域发展基金(FEDER)和竞争运营因素计划(COMPETE):2020.09481.BD,UIDP / 04539 / 2020(CIBB)和POCI-01-0145-FEDER-007440资助。作者要感谢iLAB – 显微镜和生物成像实验室的支持,科英布拉大学医学院的设施,国家基础设施PPBI-葡萄牙生物成像平台(POCI-01-0145-FEDER-022122)的成员,以及FSE CENTRO-04-3559-FSE-000142的支持。

Materials

1.6 mm I.D. silicone tubing, I.V mini drip set Fisher Scientific
4,4-difluoro-1,3,5,7,8-pentametil-4-bora-3a,4a-diaza-s-indaceno (BODIPY 493/503) Sigma-Aldrich, Lyon, France D3922
4',6-diamidino-2-phenylindole (DAPI) Molecular Probes Inc, Invitrogen, Eugene, OR D1306
70% ethanol Honeywell 10191455
Adobe Illustrator CC Adobe Inc. Used to design the figures
Automatic analyzer Hitachi 717 Roche Diagnostics Inc., Mannheim, Germany 8177-30-0010
Barrier pen (Liquid blocker super pap pen) Daido Sangyo Co., Ltd, Japon _
Blade Leica 221052145 Used in the cryostat
Cell Profiler version 4.2.5 https://cellprofiler.org/releases/ Used to analyse the acquired images
Coverslips Menzel-Glaser, Germany _
Cryomolds Tissue-Tek _
Cryostat (including specimen disc and heat extractor) CM3050 S Leica Biosystems _
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich, Lyon, France D-8418 Used to dissolve Bodipy for the 5 mg/mL stock solution. CAUTION: Toxic
and flammable. Vapors may cause
irritation. Manipulate in a fume
hood. Avoid direct contact with skin.
Wear rubber gloves, protective eye
goggles.
Dry ice container (styrofoam cooler) Novolab A26742
Dumont forceps Fine Science Tools, Germany 11295-10
Glass Petri dish (H 25 mm, ø
150 mm)
Thermo Scientific 150318 Used to weigh the liver after dissection
Glycergel DAKO Omnis S303023
GraphPad Prism software, version 9.3.1 GraphPad Software, Inc., La Jolla, CA, USA
High-fat diet Envigo, Barcelona, Spain MD.08811
Ketamine (Nimatek  100 mg/mL) Dechra 791/01/14DFVPT Used at a final concentration of 75 mg/kg
Laser scanning confocal microscope  (QUASAR detection unit; ) Carl Zeiss, germany LSM 710 Axio Observer Z1 microscope
Medetomidine (Sedator 1 mg/mL) Dechra 1838 ESP / 020/01/07RFVPT Used at a final concentration of 1 mg/kg
Needle BD microlance 300635
No 15 Sterile carbon steel scalpel
Blade
Swann-Morton 205
Objectives 10x (Plan-Neofluar 10x/0.3), 20x (Plan-Apochromat 20x/0.8) and 40x (Plan-Neofluar 40x/1.30 Oil)  Carl Zeiss, Germany
Paint brushes Van Bleiswijck Amazon B07W7KJQ2X  Used to handle cryosections
Peristaltic pump (Minipuls 3) Gilson 1004170
Phosphate-buffered saline (PBS, pH ~ 7.4) Sigma-Aldrich, Lyon, France P3813
Scalpel handle, 125 mm (5"), No. 3 Swann-Morton 0208
Slide staining system StainTray Simport Scientific M920
Standard diet  Mucedola 4RF21
Superfrost Plus microscope slides Menzel-Glaser, Germany J1800AMNZ
Tissue-Tek OCT mounting media VWR CHEMICALS 361603E
Triglycerides colorimetric assay kit Cayman Chemical 10010303
Ultrasonic bath Bandelin Sonorex  TK 52
Vannas spring scissors – 3 mm
cutting edge
Fine Science Tools, Germany 15000-00
ZEN Black software Zeiss

References

  1. Klemm, R. W., Ikonen, E. The cell biology of lipid droplets: More than just a phase. Seminars in Cell & Developmental Biology. 108, 1-3 (2020).
  2. Martin, S., Parton, R. G. Lipid droplets: A unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology. 7 (5), 373-378 (2006).
  3. Thiele, C., Penno, A., Bradshaw, R. A., Stahl, P. D. Lipid droplets. Encyclopedia of Cell Biology. , 273-278 (2016).
  4. Gluchowski, N. L., Becuwe, M., Walther, T. C., Farese, R. V. Lipid droplets and liver disease: From basic biology to clinical implications. Nature Reviews Gastroenterology & Hepatology. 14 (6), 343-355 (2017).
  5. Bickel, P. E., Tansey, J. T., Welte, M. A. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica et Biophysica Acta. 1791 (6), 419-440 (2009).
  6. Olzmann, J. A., Carvalho, P. Dynamics and functions of lipid droplets. Nature Reviews. Molecular Cell Biology. 20 (3), 137-155 (2019).
  7. Wang, L., Liu, J., Miao, Z., Pan, Q., Cao, W. Lipid droplets and their interactions with other organelles in liver diseases. The International Journal of Biochemistry & Cell Biology. 133, 105937 (2021).
  8. Carr, R. M., Ahima, R. S. Pathophysiology of lipid droplet proteins in liver diseases. Experimental Cell Research. 340 (2), 187-192 (2016).
  9. Jackson, C. L. Lipid droplet biogenesis. Current Opinion in Cell Biology. 59, 88-96 (2019).
  10. Onal, G., Kutlu, O., Gozuacik, D., Dokmeci Emre, S. Lipid droplets in health and disease. Lipids in Health and Disease. 16 (1), 128 (2017).
  11. Wang, H., Quiroga, A. D., Lehner, R., Yang, H., Li, P. Lipid Droplets. Methods in Cell Biology. , 107-127 (2013).
  12. Listenberger, L. L., Brown, D. A. Fluorescent detection of lipid droplets and associated proteins. Current Protocols in Cell Biology. , (2007).
  13. Welte, M. A., Gould, A. P. Lipid droplet functions beyond energy storage. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids. 1862 (10), 1260-1272 (2017).
  14. Roberts, M. A., Olzmann, J. A. Protein quality control and lipid droplet metabolism). Annual Review of Cell and Developmental Biology. 36, 115-139 (2020).
  15. Filali-Mouncef, Y., et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 18 (1), 50-72 (2022).
  16. Bandyopadhyay, D., et al. Lipid droplets promote phase separation of Ago2 to accelerate Dicer1 loss and decelerate miRNA activity in lipid exposed hepatic cells. bioRxiv. , (2020).
  17. Farías, M. A., Diethelm-Varela, B., Navarro, A. J., Kalergis, A. M., González, P. A. Interplay between lipid metabolism, lipid droplets, and DNA virus infections. Cells. 11 (14), 2224 (2022).
  18. Krahmer, N., Farese, R. V., Walther, T. C. Balancing the fat: Lipid droplets and human disease. EMBO Molecular Medicine. 5 (7), 973-983 (2013).
  19. Greenberg, A. S., et al. The role of lipid droplets in metabolic disease in rodents and humans. The Journal of Clinical Investigation. 121 (6), 2102-2110 (2011).
  20. Xu, S., Zhang, X., Liu, P. Lipid droplet proteins and metabolic diseases. Biochimica et Biophysica Acta. Molecular Basis of Disease. 1864 (5), 1968-1983 (2018).
  21. Herms, A., et al. Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Current Biology. 23 (15), 1489-1496 (2013).
  22. Hooper, A. J., Adams, L. A., Burnett, J. R. Genetic determinants of hepatic steatosis in man. Journal of Lipid Research. 52 (4), 593-617 (2011).
  23. Parafati, M., Kirby, R. J., Khorasanizadeh, S., Rastinejad, F., Malany, S. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis. Disease Models & Mechanisms. 11 (9), (2018).
  24. Nassir, F., Rector, R. S., Hammoud, G. M., Ibdah, J. A. Pathogenesis and prevention of hepatic steatosis. Gastroenterology & Hepatology. 11 (3), 167-175 (2015).
  25. Starekova, J., Reeder, S. B. Liver fat quantification: Where do we stand. Abdominal Radiology. 45 (11), 3386-3399 (2020).
  26. Fabbrini, E., Sullivan, S., Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology. 51 (2), 679-689 (2010).
  27. Kristiansen, M. N. B., Veidal, S. S., Christoffersen, C., Jelsing, J., Rigbolt, K. T. G. Molecular characterization of microvesicular and macrovesicular steatosis shows widespread differences in metabolic pathways. Lipids. 54 (1), 109-115 (2019).
  28. Tsutsumi, V., Nakamura, T., Ueno, T., Torimura, T., Aguirre-García, J., Muriel, P. Chapter 2: Structure and ultrastructure of the normal and diseased liver. Liver Pathophysiology. , 23-44 (2017).
  29. Tandra, S., et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. Journal of Hepatology. 55 (3), 654-659 (2011).
  30. Nascimbeni, F., et al. Clinical relevance of liver histopathology and different histological classifications of NASH in adults. Expert Review of Gastroenterology & Hepatology. 12 (4), 351-367 (2018).
  31. Yerian, L. Histopathological evaluation of fatty and alcoholic liver diseases. Journal of Digestive Diseases. 12 (1), 17-24 (2011).
  32. Stöppeler, S., et al. Gender and strain-specific differences in the development of steatosis in rats. Laboratory Animals. 47 (1), 43-52 (2013).
  33. Hübscher, S. G., Saxena, R. Alcohol-induced liver disease. Practical Hepatic Pathology: A Diagnostic Approach (Second Edition). , 371-390 (2018).
  34. Sethunath, D., et al. Automated assessment of steatosis in murine fatty liver. PLoS One. 13 (5), e0197242 (2018).
  35. Sinton, M. C., et al. Macrovesicular steatosis in nonalcoholic fatty liver disease is a consequence of purine nucleotide cycle driven fumarate accumulation. bioRxiv. , (2020).
  36. de Conti, A., et al. Characterization of the variability in the extent of nonalcoholic fatty liver induced by a high-fat diet in the genetically diverse collaborative cross mouse model. The FASEB Journal. 34 (6), 7773-7785 (2020).
  37. Virarkar, M., Szklaruk, J., Jensen, C. T., Taggart, M. W., Bhosale, P. What’s new in hepatic steatosis. Seminars in Ultrasound, CT and MRI. 42 (4), 405-415 (2021).
  38. Le, T. T., Ziemba, A., Urasaki, Y., Brotman, S., Pizzorno, G. Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-Stokes Raman scattering microscopy. PLoS One. 7 (11), e51092 (2012).
  39. Fam, T. K., Klymchenko, A. S., Collot, M. Recent advances in fluorescent probes for lipid droplets. Materials. 11 (9), 1768 (2018).
  40. Rumin, J., et al. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels. 8 (1), 42 (2015).
  41. Daemen, S., van Zandvoort, M. A. M. J., Parekh, S. H., Hesselink, M. K. C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism. 5 (3), 153-163 (2015).
  42. Spangenburg, E. E., Pratt, S. J. P., Wohlers, L. M., Lovering, R. M. Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. Journal of Biomedicine & Biotechnology. 2011, 598358 (2011).
  43. Prats, C., et al. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers. PLoS One. 8 (10), e77774 (2013).
  44. Nakano, T., et al. Ezetimibe impairs transcellular lipid trafficking and induces large lipid droplet formation in intestinal absorptive epithelial cells. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids. 1865 (12), 158808 (2020).
  45. Adomshick, V., Pu, Y., Veiga-Lopez, A. Automated lipid droplet quantification system for phenotypic analysis of adipocytes using CellProfiler. Toxicology Mechanisms and Methods. 30 (5), 378-387 (2020).
  46. Moon, J., et al. Intravital longitudinal imaging of hepatic lipid droplet accumulation in a murine model for nonalcoholic fatty liver disease. Biomedical Optics Express. 11 (9), 5132-5146 (2020).
  47. Martinez-Lopez, N., Singh, R. Autophagy and lipid droplets in the liver. Annual Review of Nutrition. 35, 215-237 (2015).
  48. Collot, M., et al. Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues. Journal of the American Chemical Society. 140 (16), 5401-5411 (2018).
  49. Selvais, C. M., De Cock, L. L., Brichard, S. M., Davis-Lopez de Carrizosa, M. A. Fiber type and subcellular-specific analysis of lipid droplet content in skeletal muscle. Journal of Visualized Experiments: Jove. (184), e63718 (2022).
  50. Zhuang, H., et al. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain, Behavior, and Immunity. 100, 155-171 (2022).
  51. Chen, J., Yue, F., Kuang, S. Labeling and analyzing lipid droplets in mouse muscle stem cells. STAR Protocols. 3 (4), 101849 (2022).

Play Video

Cite This Article
Garcia, K., Alves, A., Ribeiro-Rodrigues, T. M., Reis, F., Viana, S. Analysis of Fluorescent-Stained Lipid Droplets with 3D Reconstruction for Hepatic Steatosis Assessment. J. Vis. Exp. (196), e65206, doi:10.3791/65206 (2023).

View Video