Здесь мы демонстрируем оптимизированный протокол на основе флуоресценции BODIPY 493/503 для характеристики липидных капель в ткани печени. Благодаря использованию ортогональных проекций и 3D-реконструкций флуорофор позволяет успешно различать микровезикулярный и макровезикулярный стеатоз и может представлять собой дополнительный подход к классическим гистологическим протоколам оценки стеатоза печени.
Липидные капли (LD) представляют собой специализированные органеллы, которые опосредуют накопление липидов и играют очень важную роль в подавлении липотоксичности и предотвращении дисфункции, вызванной свободными жирными кислотами (FA). Печени, учитывая ее критическую роль в жировом обмене организма, постоянно угрожает внутриклеточное накопление ЛД в виде как микровезикулярного, так и макровезикулярного стеатоза печени. Гистологическая характеристика LD обычно основана на жирорастворимых диазокрасителях, таких как окрашивание Oil Red O (ORO), но ряд недостатков постоянно препятствует использованию этого анализа с образцами печени. Совсем недавно липофильные флуорофоры 493/503 стали популярными для визуализации и определения местоположения LD из-за их быстрого поглощения и накопления в нейтральном ядре липидных капель. Несмотря на то, что большинство применений хорошо описаны в клеточных культурах, существует меньше доказательств, демонстрирующих надежное использование липофильных флуорофорных зондов в качестве инструмента визуализации LD в образцах тканей. Здесь мы предлагаем оптимизированный протокол на основе дипиррометена бора (BODIPY) 493/503 для оценки LD в образцах печени из животной модели стеатоза печени, вызванного диетой с высоким содержанием жиров (HFD). Этот протокол охватывает подготовку образцов печени, срезы тканей, окрашивание BODIPY 493/503, получение изображений и анализ данных. Мы демонстрируем увеличение количества, интенсивности, соотношения площадей и диаметра печеночных ЛД при кормлении HFD. Используя ортогональные проекции и 3D-реконструкции, можно было наблюдать полное содержание нейтральных липидов в ядре LD, которые выглядели почти сферическими каплями. Кроме того, с помощью флуорофора BODIPY 493/503 мы смогли различить микровезикулы (1 мкм < d ≤ 3 мкм), промежуточные везикулы (3 мкм 9 мкм), что позволило успешно различать микровезикулярный и макровезикулярный стеатоз. В целом, этот протокол BODIPY 493/503 на основе флуоресценции является надежным и простым инструментом для характеристики ЛД печени и может представлять собой дополнительный подход к классическим гистологическим протоколам.
Липидные капли (ЛД), классически рассматриваемые как энергетические депо, представляют собой специализированные клеточные органеллы, которые опосредуют накопление липидов, и они составляют гидрофобное нейтральное липидное ядро, которое в основном содержит сложные эфиры холестерина и триглицериды (ТГ), инкапсулированные фосфолипидным монослоем 1,2,3.
Биогенез ЛД происходит в эндоплазматическом ретикулуме (ЭР), начиная с синтеза триацилглицерина (ТАГ) и эфиров стерола. Нейтральные липиды диффундируют между листочками бислоя ER в низких концентрациях, но сливаются в масляные линзы, которые растут и превращаются в почти сферические капли из мембраны ER, когда их внутриклеточная концентрация увеличивается4. Впоследствии белки из бислоя ER и цитозоля, особенно семейства белков перилипина (PLIN), перемещаются на поверхности LD, чтобы облегчить почкование 5,6,7,8,9.
Благодаря синтезу новых жирных кислот и слиянию или слиянию LD LD вырастают до разных размеров. Соответственно, размер и количество LD значительно различаются в разных типах клеток. Мелкие капли (диаметром 300-800 нм), известные как начальные LD (iLDs), могут образовываться почти всеми клетками4. Позже при образовании LD большинство клеток способны превращать некоторые iLD в более крупные, расширяющиеся LD (eLDs >1 мкм в диаметре). Тем не менее, только определенные типы клеток, такие как адипоциты и гепатоциты, обладают способностью образовывать гигантские или сверхбольшие LD (до десятков микрон в диаметре)4,10.
ЛД играют очень важную роль в регуляции клеточного липидного обмена, подавляя липотоксичность и предотвращая стресс ER, митохондриальную дисфункцию и, в конечном итоге, гибель клеток, вызванную свободными жирными кислотами (ЖК)11,12,13,14. Кроме того, LD также участвуют в регуляции экспрессии генов, секвестрации белка репликации вируса, а также мембранного трафика и передачи сигналов15,16,17. Таким образом, нарушение регуляции биогенеза ЛД является отличительной чертой хронических заболеваний, связанных с метаболическим синдромом, ожирением, сахарным диабетом 2 типа (СД2) и/или атеросклерозом, и это лишь некоторые из них18,19,20.
Печень, как метаболический центр, в основном отвечает за липидный обмен путем хранения и переработки липидов, и, следовательно, ей постоянно угрожает липотоксичность21. Стеатоз печени (ГС) является общим признаком ряда прогрессирующих заболеваний печени и характеризуется чрезмерным внутриклеточным накоплением липидов в виде цитозольных ЛД, что, в конечном итоге, может привести к метаболической дисфункции печени, воспалению и запущенным формам неалкогольной жировой болезни печени22,23,24,25. HS возникает, когда скорость окисления и экспорта жирных кислот в виде триглицеридов в липопротеинах очень низкой плотности (ЛПОНП) ниже, чем скорость поглощения жирных кислот печенью из плазмы и синтеза жирных кислот de novo 26. Накопление липидов в печени часто происходит в двух формах – микровезикулярном и макровезикулярном стеатозе – и они проявляют различные цитоархитектонические характеристики27. Как правило, микровезикулярный стеатоз характеризуется наличием небольших ЛД, рассеянных по всему гепатоциту с центральным расположением ядра, тогда как макровезикулярный стеатоз характеризуется наличием одного большого ЛД, который занимает большую часть гепатоцита, выталкивая ядро на периферию28,29. Примечательно, что эти два типа стеатоза часто встречаются вместе, и остается неясным, как эти два паттерна LD влияют на патогенез заболевания, поскольку доказательства все еще противоречивы31,32,33,34. Тем не менее, такой тип анализа часто используется в качестве «эталонного стандарта» в доклинических и клинических исследованиях для понимания динамического поведения LD и характеристики стеатоза печени 29,34,35,36.
Биопсия печени, золотой стандарт диагностики и классификации ГС, обычно оценивается с помощью гистологического анализа гематоксилина и эозина (H & E), где липидные капли оцениваются как неокрашенные вакуоли в окрашенных H&E срезахпечени 37. Хотя этот тип окрашивания приемлем для оценки макровезикулярного стеатоза, он обычно сужает оценку микровезикулярного стеатоза38. Жирорастворимые диазокрасители, такие как Oil Red O (ORO), классически комбинируют с светлопольной микроскопией для анализа внутриклеточных запасов липидов, но они все еще имеют ряд недостатков: (i) использование этанола или изопропанола в процессе окрашивания, что часто вызывает разрушение нативных LD и случайное слияние, несмотря на то, что клетки фиксируются39; (ii) трудоемкий характер, поскольку раствор ORO требует растворения и фильтрации свежего порошка из-за ограниченного срока годности, что способствует менее стабильным результатам; (iii) и тот факт, что ORO окрашивает не только липидные капли, но и часто переоценивает стеатоз печени38.
Следовательно, проницаемые для клеток липофильные флуорофоры, такие как нильский красный, использовались либо в живых, либо в фиксированных образцах для преодоления некоторых из вышеупомянутых ограничений. Однако неспецифический характер маркировки клеточных липидных органелл неоднократно сужает оценки ЛД40. Кроме того, спектральные свойства Nile Red изменяются в зависимости от полярности окружающей среды, что часто может приводить к спектральным сдвигам41.
Липофильный флуоресцентный зонд 1,3,5,7,8-пентаметил-4-бора-3а,4адиаза-с-индацен (длина волны возбуждения: 480 нм; максимум излучения: 515 нм; BODIPY 493/503) проявляет характеристики гидрофобности, которые позволяют быстро поглощать его внутриклеточными ЛД, накапливается в ядре липидных капель и, впоследствии, испускает ярко-зеленую флуоресценцию12. В отличие от Nile Red, BODIPY 493/503 нечувствителен к полярности окружающей среды и, как было показано, более селективен, поскольку он демонстрирует высокую яркость для визуализации LD. Для окрашивания нейтральных LD этот краситель можно использовать в живых или фиксированных клетках и успешно сочетать с другими методами окрашивания и/или маркировки42. Еще одним преимуществом красителя является то, что он не требует особых усилий для помещения в раствор и является стабильным, что устраняет необходимость в его свежем приготовлении для каждого эксперимента42. Несмотря на то, что зонд BODIPY 493/503 был успешно использован для визуализации локализации и динамики LD в клеточных культурах, в некоторых отчетах также продемонстрировано надежное использование этого красителя в качестве инструмента визуализации LD в тканях, включая латеральную мышцу43 человека, камбаловидную мышцу 42 крысы и кишечник44 мыши.
Здесь мы предлагаем оптимизированный протокол на основе BODIPY 493/503 в качестве альтернативного аналитического подхода для оценки числа, площади и диаметра LD в образцах печени из животной модели стеатоза печени. Эта процедура охватывает подготовку образцов печени, срез тканей, условия окрашивания, получение изображений и анализ данных.
Этот протокол BODIPY 493/503 на основе флуоресценции для оценки LD был направлен на разработку нового подхода к визуализации для оценки стеатоза печени. Учитывая сильную корреляцию между ожирением и жировой болезнью печени, диета с высоким содержанием жиров в западном стиле была использован?…
The authors have nothing to disclose.
Это исследование финансировалось национальными и европейскими фондами через Португальский научно-технический фонд (FCT), Европейский фонд регионального развития (FEDER) и Programa Operacional Factores de Competitividade (COMPETE): 2020.09481.BD, UIDP/04539/2020 (CIBB) и POCI-01-0145-FEDER-007440. Авторы хотели бы поблагодарить за поддержку iLAB – Лабораторию микроскопии и биовизуализации, учреждение медицинского факультета Университета Коимбры и члена национальной инфраструктуры PPBI-Португальская платформа биовизуализации (POCI-01-0145-FEDER-022122), а также поддержку со стороны FSE CENTRO-04-3559-FSE-000142.
1.6 mm I.D. silicone tubing, I.V mini drip set | Fisher Scientific | ||
4,4-difluoro-1,3,5,7,8-pentametil-4-bora-3a,4a-diaza-s-indaceno (BODIPY 493/503) | Sigma-Aldrich, Lyon, France | D3922 | |
4',6-diamidino-2-phenylindole (DAPI) | Molecular Probes Inc, Invitrogen, Eugene, OR | D1306 | |
70% ethanol | Honeywell | 10191455 | |
Adobe Illustrator CC | Adobe Inc. | Used to design the figures | |
Automatic analyzer Hitachi 717 | Roche Diagnostics Inc., Mannheim, Germany | 8177-30-0010 | |
Barrier pen (Liquid blocker super pap pen) | Daido Sangyo Co., Ltd, Japon | _ | |
Blade | Leica | 221052145 | Used in the cryostat |
Cell Profiler version 4.2.5 | https://cellprofiler.org/releases/ | Used to analyse the acquired images | |
Coverslips | Menzel-Glaser, Germany | _ | |
Cryomolds | Tissue-Tek | _ | |
Cryostat (including specimen disc and heat extractor) CM3050 S | Leica Biosystems | _ | |
Dimethyl Sulfoxide (DMSO) | Sigma-Aldrich, Lyon, France | D-8418 | Used to dissolve Bodipy for the 5 mg/mL stock solution. CAUTION: Toxic and flammable. Vapors may cause irritation. Manipulate in a fume hood. Avoid direct contact with skin. Wear rubber gloves, protective eye goggles. |
Dry ice container (styrofoam cooler) | Novolab | A26742 | |
Dumont forceps | Fine Science Tools, Germany | 11295-10 | |
Glass Petri dish (H 25 mm, ø 150 mm) |
Thermo Scientific | 150318 | Used to weigh the liver after dissection |
Glycergel | DAKO Omnis | S303023 | |
GraphPad Prism software, version 9.3.1 | GraphPad Software, Inc., La Jolla, CA, USA | ||
High-fat diet | Envigo, Barcelona, Spain | MD.08811 | |
Ketamine (Nimatek 100 mg/mL) | Dechra | 791/01/14DFVPT | Used at a final concentration of 75 mg/kg |
Laser scanning confocal microscope (QUASAR detection unit; ) | Carl Zeiss, germany | LSM 710 Axio Observer Z1 microscope | |
Medetomidine (Sedator 1 mg/mL) | Dechra | 1838 ESP / 020/01/07RFVPT | Used at a final concentration of 1 mg/kg |
Needle | BD microlance | 300635 | |
No 15 Sterile carbon steel scalpel Blade |
Swann-Morton | 205 | |
Objectives 10x (Plan-Neofluar 10x/0.3), 20x (Plan-Apochromat 20x/0.8) and 40x (Plan-Neofluar 40x/1.30 Oil) | Carl Zeiss, Germany | ||
Paint brushes | Van Bleiswijck Amazon B07W7KJQ2X | Used to handle cryosections | |
Peristaltic pump (Minipuls 3) | Gilson | 1004170 | |
Phosphate-buffered saline (PBS, pH ~ 7.4) | Sigma-Aldrich, Lyon, France | P3813 | |
Scalpel handle, 125 mm (5"), No. 3 | Swann-Morton | 0208 | |
Slide staining system StainTray | Simport Scientific | M920 | |
Standard diet | Mucedola | 4RF21 | |
Superfrost Plus microscope slides | Menzel-Glaser, Germany | J1800AMNZ | |
Tissue-Tek OCT mounting media | VWR CHEMICALS | 361603E | |
Triglycerides colorimetric assay kit | Cayman Chemical | 10010303 | |
Ultrasonic bath | Bandelin Sonorex | TK 52 | |
Vannas spring scissors – 3 mm cutting edge |
Fine Science Tools, Germany | 15000-00 | |
ZEN Black software | Zeiss |