Aquí se describe un protocolo proteómico de etiquetado de proximidad de lisosomas neuronales para caracterizar el microambiente lisosomal dinámico en neuronas derivadas de células madre pluripotentes inducidas por humanos. Las proteínas de membrana lisosomal y las proteínas que interactúan con los lisosomas (de forma estable o transitoria) se pueden cuantificar con precisión en este método con una excelente resolución espacial intracelular en neuronas humanas vivas.
Los lisosomas frecuentemente se comunican con una variedad de biomoléculas para lograr la degradación y otras funciones celulares diversas. Los lisosomas son críticos para la función cerebral humana, ya que las neuronas son postmitóticas y dependen en gran medida de la vía autofagia-lisosoma para mantener la homeostasis celular. A pesar de los avances en la comprensión de varias funciones lisosomales, capturar las comunicaciones altamente dinámicas entre los lisosomas y otros componentes celulares es técnicamente desafiante, particularmente en una forma de alto rendimiento. Aquí, se proporciona un protocolo detallado para el método proteómico de marcado de proximidad de lisosomas endógeno (knock-in) recientemente publicado en neuronas derivadas de células madre pluripotentes inducidas humanas (hiPSC).
Tanto las proteínas de la membrana lisosomal como las proteínas que rodean los lisosomas dentro de un radio de 10-20 nm se pueden identificar con confianza y cuantificar con precisión en neuronas humanas vivas. Cada paso del protocolo se describe en detalle, es decir, cultivo de neuronas hiPSC, etiquetado de proximidad, recolección de neuronas, microscopía de fluorescencia, enriquecimiento de proteínas biotiniladas, digestión de proteínas, análisis de LC-MS y análisis de datos. En resumen, este método único de proteómica de etiquetado de proximidad lisosomal endógeno proporciona una herramienta analítica robusta y de alto rendimiento para estudiar las actividades lisosomales altamente dinámicas en neuronas humanas vivas.
Los lisosomas son orgánulos catabólicos que degradan macromoléculas a través de la vía lisosomal-autofagia1. Además de la degradación, los lisosomas están involucrados en diversas funciones celulares, como la transducción de señalización, la detección de nutrientes y la secreción 2,3,4. Las perturbaciones en la función lisosomal han sido implicadas en trastornos de almacenamiento lisosomal, cáncer, envejecimiento y neurodegeneración 3,5,6,7. Para las neuronas postmitóticas y altamente polarizadas, los lisosomas juegan un papel crítico en la homeostasis celular neuronal, la liberación de neurotransmisores y el transporte a larga distancia a lo largo de los axones 8,9,10,11. Sin embargo, investigar los lisosomas en las neuronas humanas ha sido una tarea difícil. Los avances recientes en las tecnologías de neuronas derivadas de células madre pluripotentes inducidas (iPSC) han permitido el cultivo de neuronas humanas vivas que antes eran inaccesibles, cerrando la brecha entre los modelos animales y los pacientes humanos para estudiar el cerebro humano12,13. En particular, la avanzada tecnología i3Neuron integra de manera estable el factor de transcripción de neurogenina-2 en el genoma iPSC bajo un promotor inducible por doxiciclina, lo que lleva a las iPSC a diferenciarse en neuronas corticales puras en 2 semanas14,15.
Debido a la actividad lisosomal altamente dinámica, capturar las interacciones lisosomales con otros componentes celulares es técnicamente desafiante, particularmente en una forma de alto rendimiento. La tecnología de etiquetado de proximidad es adecuada para estudiar estas interacciones dinámicas debido a su capacidad para capturar interacciones de proteínas estables y transitorias / débiles con una especificidad espacial excepcional16,17. La peroxidasa modificada o la biotina ligasa pueden fusionarse genéticamente con la proteína del cebo. Tras la activación, se producen radicales de biotina altamente reactivos para marcar covalentemente las proteínas vecinas, que luego pueden enriquecerse con perlas recubiertas de estreptavidina para la proteómica ascendente aguas abajo a través de plataformas de cromatografía líquida-espectrometría de masas (LC-MS) 17,18,19,20,21.
Recientemente se desarrolló un método proteómico de marcado de proximidad lisosomal endógeno para capturar el microambiente lisosomal dinámico en i3Neuronas22. La ascorbato peroxidasa diseñada (APEX2) se introdujo en el extremo C de la proteína de membrana asociada lisosomal 1 (LAMP1) en iPSC, que luego se puede diferenciar en neuronas corticales. LAMP1 es una proteína de membrana lisosomal abundante y un marcador lisosomal clásico23. LAMP1 también se expresa en endosomas tardíos, que maduran en lisosomas; Estos endosomas-lisosomas tardíos y lisosomas no degradativos se conocen como lisosomas en este protocolo. Esta sonda endógena LAMP1-APEX, expresada a nivel fisiológico, puede reducir la mala localización de LAMP1 y los artefactos de sobreexpresión. Cientos de proteínas de membrana lisosomal e interactores lisosomales pueden ser identificados y cuantificados con una excelente resolución espacial en neuronas humanas vivas.
Aquí, se describe un protocolo detallado para la proteómica de marcado de proximidad lisosómica en neuronas humanas derivadas de iPSC con mejoras adicionales del método22 recientemente publicado. El flujo de trabajo general se ilustra en la figura 1. El protocolo incluye cultivo de neuronas derivadas de hiPSC, activación de marcado de proximidad en neuronas, validación de la actividad APEX por microscopía de fluorescencia, determinación de una proporción óptima de perlas de estreptavidina a proteína de entrada, enriquecimiento de proteínas biotiniladas, digestión de proteínas en perlas, desalinización y cuantificación de péptidos, análisis LC-MS y análisis de datos proteómicos. También se discuten las pautas de solución de problemas y las optimizaciones experimentales para mejorar el control de calidad y el rendimiento del etiquetado de proximidad.
Usando esta sonda LAMP1-APEX, las proteínas en y cerca de la membrana lisosomal son biotiniladas y enriquecidas. Dado el diámetro típico del lisosoma de 100-1.200 nm, este método proporciona una excelente resolución intracelular con un radio de etiquetado de 10-20 nm. LAMP1 es una proteína de membrana lisosomal abundante y un marcador clásico para lisosomas, que sirve como una excelente proteína de cebo para el marcado lisosomal APEX a nivel de expresión endógena. Sin embargo, también existen limitaciones cuan…
The authors have nothing to disclose.
Este estudio cuenta con el apoyo de la subvención de los NIH (R01NS121608). A.M.F. reconoce la beca ARCS-Metro Washington Chapter y la beca Bourbon F. Scribner Endowment Fellowship. Agradecemos al laboratorio Michael Ward en el Instituto Nacional de Trastornos Neurológicos y Accidentes Cerebrovasculares (NINDS) por el apoyo en biología molecular y el desarrollo de la tecnología i3Neuron.
10% (w/v) Saponin solution | Acros Organics | 419231000 | Flourescent Microscopy |
Accutase | Life Technologies | A1110501 | cell detachment solution, Cell Culture |
B27 Supplement | Fisher Scientific | 17504044 | Cell Culture, Cortical Neuron Medium |
BDNF | PeproTech | 450-02 | Cell Culture, Cortical Neuron Medium |
Boric acid | Sigma-Aldrich | B6768 | Cell Culture, Borate Buffer |
Bovine Serum Albumin | Millipore Sigma | A8806 | To make standard solutions to measure total protein concentrations |
Brainphys neuronal medium | STEMCELL Technologies | 5790 | Cell Culture, Cortical Neuron Medium |
CD45R (B220) Antibody Alexa Fluor 561 | Thermo Fisher Scientific | 505-0452-82 | Flourescent Microscopy |
Chroman1 ROCK inhibitor | Tocris | 716310 | Cell Culture |
cOmplete mini Protease Inhibitor | Roche | 4693123001 | cocktail inhibitor in Lysis Buffer |
DC Protein Assay Kit II | Bio-Rad | 5000112 | To determine total protein concentrations of cell lysate |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D8418 | Proximity-labeling Reaction |
DMEM/F12 medium | Thermo Fisher Scientific | 11320082 | Cell Culture, Dish Coating |
DMEM/F12 medium with HEPES | Thermo Fisher Scientific | 11330057 | Cell Culture, Induction Medium |
Donkey serum | Sigma-Aldrich | D9663 | Flourescent Microscopy |
Doxycycline hyclate, ≥98% (HPLC) | Sigma-Aldrich | D9891-1G | Cell Culture, Induction Medium |
Essential 8 Medium | Thermo Fisher Scientific | A1517001 | Cell Culture |
Essential 8 Supplement (50x) | Thermo Fisher Scientific | A1517101 | Cell Culture |
Extraction plate vacuum manifold kit | Waters | WAT097944 | For Peptide desalting |
Formic Acid (FA) | Fisher Scientific | A11750 | For LC-MS analysis |
GDNF | PeproTech | 450-10 | Cell Culture, Cortical Neuron Medium |
Hoechst dye | Thermo Fisher Scientific | 62239 | Flourescent Microscopy |
HPLC grade methanol | Fisher Scientific | A452 | For Peptide desalting |
HPLC grade water | Fisher Scientific | W5 | For Peptide desalting |
Human induced pluripotent stem cells | Corriell Institute | GM25256 | Cell Culture |
Hydrogen peroxide, ACS, 29-32% w/w aq. soln., stab. | Thermo Fisher Scientific | AA33323AD | Proximity-labeling Reaction |
Iodoacetamide (IAA) | Millipore Sigma | I6125 | For Protein Digestion |
Laminin | Fisher Scientific | 23017015 | Cell Culture, Cortical Neuron Medium |
LC-MS grade Acetonitrile | Fisher Scientific | A955 | For LC-MS analysis |
LC-MS grade water | Fisher Scientific | W64 | For LC-MS analysis |
L-glutamine | Fisher Scientific | 25-030-081 | Cell Culture, Induction Medium |
Matrigel | Thermo Fisher Scientific | 08-774-552 | basement membrane matrix, Cell Culture, Dish Coating |
Mouse anti-human LAMP1 monoclonal antibody | Developmental Studies Hybridoma Bank | h4a3 | Flourescent Microscopy |
N-2 Supplement (100x) | Fisher Scientific | 17-502-048 | Cell Culture, Induction Medium |
Nitrocellulose Membrane, Precut, 0.45 µm, 7 x 8.5 cm | Bio-Rad | 1620145 | To conduct dot blot assay for bead titration |
Non-essential amino acids (NEAA) | Fisher Scientific | 11-140-050 | Cell Culture, Induction Medium |
NT-3 | PeproTech | 450-03 | Cell Culture, Cortical Neuron Medium |
Oasis HLB 96-well solid phase extraction plate | Waters | 186000309 | For Peptide desalting |
Odyssey Blocking Buffer (TBS) | LI-COR Biosciences | 927-50000 | To conduct dot blot assay for bead titration |
Paraformaldehyde | Electron Microscopy Sciences | 15710 | Flourescent Microscopy |
Phenol Biotin (1,000x stock) | Adipogen | 41994-02-9 | Proximity-labeling Reaction |
Phosphate-buffered saline (PBS) without calcium or magnesium | Gibco | 10010049 | Cell Culture, Proximity-labeling Reaction, Flourescent Microscopy |
Pierce Quantitative Colorimetric Peptide Assay | Thermo Fisher | 23275 | Peptide Concentration Assay |
Poly-L-Ornithine (PLO) | Millipore Sigma | P3655 | Cell Culture, Dish Coating |
Sodium Ascorbate | Sigma-Aldrich | A4034 | Proximity-Labeling Quench Buffer, Lysis Buffer |
Sodium azide | Sigma-Aldrich | S8032 | Proximity-Labeling Quench Buffer, Lysis Buffer, Flourescent Microscopy |
Sodium chloride | Thermo Fisher Scientific | S271500 | Cell Culture, Borate Buffer |
Sodium dodecyl sulfate (SDS) | Thermo Fisher Scientific | BP1311220 | Lysis Buffer, Dot blot assay buffer, Beads wash buffer |
Sodium hydroxide | Sigma-Aldrich | 415413 | Cell Culture, Borate Buffer |
Sodium tetraborate | Sigma-Aldrich | 221732 | Cell Culture, Borate Buffer |
SpeedVac concentrator | vacuum concentrator | ||
Streptavidin Magnetic Sepharose Beads | Cytiva (formal GE) | 28-9857-99 | Enrich biotinylated proteins |
Streptavidin, Alexa Fluor 680 Conjugate | Thermo Fisher Scientific | S32358 | To conduct dot blot assay for bead titration |
Thermomixer | temperature-controlled mixer | ||
Trifluoacetic acid (TFA) | Millipore Sigma | 302031 | For Peptide desalting |
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) | Millipore Sigma | C4706 | For Protein Digestion |
Tris-HCl | Thermo Fisher Scientific | BP152500 | Lysis Buffer, Dot blot assay buffer, Beads wash buffer |
Triton-X | Thermo Fisher Scientific | BP151500 | Beads wash buffer |
TROLOX | Sigma-Aldrich | 648471 | Proximity-Labeling Quench Buffer, Lysis Buffer |
Trypsin/Lys-C Mix, Mass Spec Grade | Promega | V5073 | For Protein Digestion |
TWEEN 20 | Millipore Sigma | P1379 | Dot blot assay buffer |
Urea | Thermo Fisher Scientific | BP169500 | Beads wash and On-Beads Digestion Buffer |
Vitronectin | STEMCELL Technologies | 7180 | Cell Culture, Dish Coating |
Y-27632 ROCK inhibitor | Selleck | S1049 | Cell Culture |