В этой статье подробно описывается протокол быстрой идентификации инделов, индуцированных CRISPR/Cas9, и выбора мутантных линий у комара Aedes aegypti с использованием анализа расплава с высоким разрешением.
Редактирование генов комаров стало обычным делом в нескольких лабораториях с созданием таких систем, как транскрипционно-активатор-подобные эффекторные нуклеазы (TALENs), нуклеазы цинкового пальца (ZFNs) и самонаводящиеся эндонуклеазы (HEs). Совсем недавно технология кластеризованных регулярно чередующихся коротких палиндромных повторов (CRISPR) / CRISPR-ассоциированного белка 9 (Cas9) предложила более простую и дешевую альтернативу для точной геномной инженерии. После действия нуклеазы пути репарации ДНК будут исправлять сломанные концы ДНК, часто вводя индели. Эти внекадровые мутации затем используются для понимания функции генов в целевых организмах. Недостатком, однако, является то, что мутантные особи не несут доминирующего маркера, что затрудняет идентификацию и отслеживание аллелей мутантов, особенно в масштабах, необходимых для многих экспериментов.
Анализ расплава с высоким разрешением (HRMA) является простым методом выявления вариаций последовательностей нуклеиновых кислот и использует кривые плавления ПЦР для обнаружения таких изменений. Этот метод анализа после ПЦР использует флуоресцентные двухцепочечные ДНК-связывающие красители с приборами, которые имеют возможность сбора данных о контроле температуры и легко масштабируются до форматов пластин с 96 лунками. Здесь описан простой рабочий процесс с использованием HRMA для быстрого обнаружения CRISPR/Cas9-индуцированных инделей и установления мутантных линий у комара Ae. aegypti. Критически важно, что все этапы могут быть выполнены с небольшим количеством ткани ноги и не требуют жертвоприношения организма, позволяя проводить генетические скрещивания или фенотипирование после генотипирования.
Как переносчики патогенов, таких как вирусы денге1, Зика2 и чикунгунья3, а также малярийные паразиты4, комары представляют значительную угрозу для здоровья людей. В связи со всеми этими заболеваниями основное внимание уделяется мерам по борьбе с комарами-переносчиками. Изучение генов, важных, например, в отношении вседозволенности к патогенам, приспособленности комаров, выживания, размножения и устойчивости к инсектицидам, является ключом к разработке новых стратегий борьбы с комарами. Для таких целей редактирование генома у комаров становится обычной практикой, особенно с развитием таких технологий, как HEs, ZFN, TALENs и совсем недавно CRISPR с Cas9. Создание генетически отредактированных штаммов обычно включает в себя обратное скрещивание людей, несущих желаемые мутации в течение нескольких поколений, чтобы свести к минимуму нецелевые и фаундокторные (узкие места) эффекты, с последующим скрещиванием гетерозиготных особей для генерации гомозиготных или трансгетерозиготных линий. В отсутствие доминирующего маркера молекулярное генотипирование необходимо в этом процессе, поскольку во многих случаях у гетерозиготных мутантов не может быть обнаружено четких фенотипических признаков.
Хотя секвенирование является золотым стандартом для генотипической характеристики, выполнение этого для сотен или, возможно, тысяч особей сопряжено со значительными затратами, трудом и временем, необходимыми для получения результатов, что особенно важно для организмов с короткой продолжительностью жизни, таких как комары. Обычно используемыми альтернативами являются Surveyor nuclease assay5 (SNA), T7E1 assay6 и анализ расплава с высоким разрешением (HRMA, рассмотрено в 7). И SNA, и T7E1 используют эндонуклеазы, которые расщепляют только несоответствующие основания. Когда мутированная область гетерозиготного мутантного генома амплифицируется, фрагменты ДНК из аллелей мутантного и дикого типа отжигаются, чтобы сделать несоответствующую двухцепочечную ДНК (dsDNA). СНС обнаруживает наличие несоответствий через пищеварение с несоответствующей специфической эндонуклеазой и простым электрофорезом агарозного геля. В качестве альтернативы HRMA использует термодинамические свойства dsDNA, обнаруженные флуоресцентными красителями, связывающими dsDNA, при этом температура диссоциации красителя изменяется в зависимости от наличия и типа мутации. HRMA использовался для обнаружения однонуклеотидных полиморфизмов (SNP)8, мутантного генотипирования рыб данио9, микробиологических приложений10 и генетических исследований растений11.
В этой статье описывается HRMA, простой метод молекулярного генотипирования для комаров-мутантов, генерируемый технологией CRISPR / Cas9. Преимущества HRMA перед альтернативными методами включают в себя 1) гибкость, поскольку она доказала свою полезность для различных генов, широкий диапазон размеров инделя, а также различие между различными размерами инделя и гетерозиготной, гомозиготной и трансгетерозиговой дифференцировкой12,13,14, 2) стоимость, поскольку она основана на широко используемых реагентах ПЦР, и 3) экономию времени, так как это может быть выполнено всего за несколько часов. Кроме того, протокол использует небольшую часть тела (ногу) в качестве источника ДНК, что позволяет комару выжить в процессе генотипирования, позволяя устанавливать и поддерживать мутантные линии.
Анализ расплава с высоким разрешением предлагает простое и быстрое решение для идентификации инделей, генерируемых технологией CRISPR/Cas9 в комаре-переносчике Ae. aegypti. Он обеспечивает гибкость, позволяя генотипировать комаров, мутировавших для широкого спектра генов от мышц полета д?…
The authors have nothing to disclose.
Все фигуры были созданы с Biorender.com по лицензии Техасского университета A&M. Эта работа была поддержана средствами Национального института аллергии и инфекционных заболеваний (AI137112 и AI115138 до Z.N.A.), Texas A&M AgriLife Research в рамках Программы грантов на переносчики насекомых и Национального института продовольствия и сельского хозяйства Министерства сельского хозяйства США, проект Хэтч 1018401.
70% Ethanol | 70% ethanol solution in water | ||
96-well PCR and Real-time PCR plates | VWR | 82006-636 | For obtaining genomic DNA (from the mosquito leg) |
96-well plate templates | House-made printed, for genotype recording | ||
Bio Rad CFX96 | Bio Rad | PCR machine with gradient and HRMA capabilities | |
Diversified Biotech reagent reservoirs | VWR | 490006-896 | |
Exo-CIP Rapid PCR Cleanup Kit | New England Biolabs | E1050S | |
Glass Petri Dish | VWR | 89001-246 | 150 mm x 20 mm |
Hard-shell thin-wall 96-well skirted PCR plates | Bio-rad | HSP9665 | For HRMA |
Multi-channel pipettor (P10) | Integra Biosciences | 4721 | |
Multi-channel pipettor (P300) | Integra Biosciences | 4723 | |
Nunc Polyolefin Acrylate Sealing tape, Thermo Scientific | VWR | 37000-548 | To use with the 96-well PCR plates for obtaining genomic DNA |
Optical sealing tape | Bio-rad | 2239444 | To use with the 96-well skirted PCR plates for HRMA |
Phire Animal tissue direct PCR Kit (without sampling tools) | Thermo Fisher | F140WH | For obtaining genomic DNA and performing PCR |
Plastic Fly Vial Dividers | Genesee | 59-128W | |
Precision Melt Analysis Software | Bio Rad | 1845025 | Used for genotyping the mosquito DNA samples and analyzing the thermal denaturation properties of double-stranded DNA (see protocol step 3.3) |
SeqMan Pro | DNAstar Lasergene software | For multiple sequence alignment | |
Single-channel pipettor | Gilson | ||
Tweezers Dumont #5 11 cm | WPI | 14098 | |
White foam plugs | VWR | 60882-189 | |
Wide Drosophila Vials, Polystyrene | Genesee | 32-117 | |
Wide Fly Vial Tray, Blue | Genesee | 59-164B |