Este artigo detalha um protocolo para identificação rápida de indels induzidos pelo CRISPR/Cas9 e seleção de linhas mutantes no mosquito Aedes aegypti utilizando análise de derretimento de alta resolução.
A edição de genes de mosquitos tornou-se rotina em vários laboratórios com o estabelecimento de sistemas como nucleases efeitos (TALENs) de ativação de transcrição, núcleos de dedo de zinco (ZFNs) e endonucleases (HEs). Mais recentemente, a tecnologia de repetições palindômicas curtas interespaçadas regularmente (CRISPR)/CRISPR(Cas9) ofereceu uma alternativa mais fácil e barata para a engenharia de genomas de precisão. Após a ação nuclease, as vias de reparação de DNA consertarão as extremidades de DNA quebradas, muitas vezes introduzindo indels. Essas mutações fora do quadro são então usadas para entender a função genética nos organismos alvo. Uma desvantagem, no entanto, é que indivíduos mutantes não carregam nenhum marcador dominante, tornando a identificação e o rastreamento de alelos mutantes desafiadores, especialmente em escalas necessárias para muitos experimentos.
A análise de derretimento de alta resolução (HRMA) é um método simples para identificar variações nas sequências de ácido nucleico e utiliza curvas de fusão pcr para detectar tais variações. Este método de análise pós-PCR usa corantes fluorescentes de ligação de DNA de dupla fita com instrumentação que tem capacidade de captura de dados de controle de rampa de temperatura e é facilmente dimensionado para formatos de placas de 96 poços. Descrito aqui é um simples fluxo de trabalho utilizando o HRMA para a detecção rápida de indeles induzidos pelo CRISPR/Cas9 e o estabelecimento de linhas mutantes no mosquito Ae. aegypti. Criticamente, todas as etapas podem ser realizadas com uma pequena quantidade de tecido da perna e não requerem o sacrifício do organismo, permitindo que cruzes genéticas ou ensaios de fenotipagem sejam realizados após a genotipagem.
Como vetores de patógenos como os vírus da dengue1, zika2 e chikungunya3, bem como parasitas maláricos4, os mosquitos representam uma ameaça significativa à saúde pública para os seres humanos. Para todas essas doenças, há um foco substancial de intervenção de transmissão no controle de mosquitos vetores. O estudo dos genes importantes, por exemplo, na permissividade aos patógenos, na aptidão dos mosquitos, na sobrevivência, na reprodução e na resistência aos inseticidas é fundamental para o desenvolvimento de novas estratégias de controle de mosquitos. Para tais efeitos, a edição de genomas em mosquitos está se tornando uma prática comum, especialmente com o desenvolvimento de tecnologias como HEs, ZFNs, TALENs e, mais recentemente, CRISPR com Cas9. O estabelecimento de cepas editadas por genes normalmente envolve o backcrossing de indivíduos que carregam as mutações desejadas por algumas gerações para minimizar efeitos fora do alvo e fundador (gargalo), seguido pela travessia de indivíduos heterozigosos para gerar linhas homozigosas ou trans-heterozigosas. Na ausência de um marcador dominante, a genotipagem molecular é necessária nesse processo porque, em muitos casos, não podem ser detectados traços fenotípicos claros para mutantes heterozigosos.
Embora o sequenciamento seja o padrão-ouro para a caracterização genotipípica, realizar isso em centenas, ou possivelmente milhares de indivíduos, representa custos significativos, mão-de-obra e tempo necessários para obter resultados, o que é especialmente crítico para organismos com vida útil curta, como mosquitos. Alternativas comumente utilizadas são Surveyor nuclease assay5 (SNA), ensaio T7E1 e análise de derretimento de alta resolução (HRMA, revisado in7). Tanto o SNA quanto o T7E1 usam endonucleases que apenas se descompatem bases incompatíveis. Quando uma região mutante mutante mutada do genoma mutante heterozigoso é amplificada, fragmentos de DNA de alelos mutantes e do tipo selvagem são enais para fazer DNA de dupla cadeia incompatível (dsDNA). A SNA detecta a presença de incompatibilidades via digestão com uma endonuclease específica de incompatibilidade e eletroforese de gel de agarose simples. Alternativamente, o HRMA utiliza as propriedades termodinâmicas do dsDNA detectadas por corantes fluorescentes de ligação dsDNA, com a temperatura de dissociação do corante variando com base na presença e tipo de mutação. O HRMA tem sido utilizado para a detecção de polimorfismos de nucleotídeos únicos (SNPs)8, genotipagem mutante de peixe-zebra9, aplicações microbiológicas10 e pesquisa genética vegetal11, entre outros.
Este artigo descreve o HRMA, um método simples de genotipagem molecular para mosquitos mutantes gerado pela tecnologia CRISPR/Cas9. As vantagens do HRMA sobre técnicas alternativas incluem 1) flexibilidade, pois tem sido comprovadamente útil para vários genes, uma ampla gama de tamanhos indel, bem como a distinção entre diferentes tamanhos indel e heterozigous, homozygous e trans-heterozygous diferenciação12,13,14, 2) custo, pois é baseado em reagentes PCR comumente usados, e 3) economia de tempo, como pode ser realizado em apenas algumas horas. Além disso, o protocolo utiliza uma pequena parte do corpo (uma perna) como fonte de DNA, permitindo que o mosquito sobreviva ao processo de genotipagem, permitindo o estabelecimento e manutenção de linhas mutantes.
A análise de derretimento de alta resolução oferece uma solução simples e rápida para a identificação de indels gerados pela tecnologia CRISPR/Cas9 no mosquito vetor Ae. aegypti. Ele fornece flexibilidade, permitindo a genotipagem de mosquitos mutados para uma ampla gama de genes, desde o músculo de voo até o metabolismo do ferro e mais 13,14. O HRMA pode ser realizado em apenas algumas horas, desde a coleta de amostras até as análises finais…
The authors have nothing to disclose.
Todos os números foram criados com Biorender.com sob licença para a Texas A&M University. Este trabalho foi apoiado por fundos do Instituto Nacional de Alergia e Doenças Infecciosas (AI137112 e AI115138 a Z.N.A.), Texas A&M AgriLife Research sob o Insect Vectored Disease Grant Program, e o UsDA National Institute of Food and Agriculture, projeto Hatch 1018401.
70% Ethanol | 70% ethanol solution in water | ||
96-well PCR and Real-time PCR plates | VWR | 82006-636 | For obtaining genomic DNA (from the mosquito leg) |
96-well plate templates | House-made printed, for genotype recording | ||
Bio Rad CFX96 | Bio Rad | PCR machine with gradient and HRMA capabilities | |
Diversified Biotech reagent reservoirs | VWR | 490006-896 | |
Exo-CIP Rapid PCR Cleanup Kit | New England Biolabs | E1050S | |
Glass Petri Dish | VWR | 89001-246 | 150 mm x 20 mm |
Hard-shell thin-wall 96-well skirted PCR plates | Bio-rad | HSP9665 | For HRMA |
Multi-channel pipettor (P10) | Integra Biosciences | 4721 | |
Multi-channel pipettor (P300) | Integra Biosciences | 4723 | |
Nunc Polyolefin Acrylate Sealing tape, Thermo Scientific | VWR | 37000-548 | To use with the 96-well PCR plates for obtaining genomic DNA |
Optical sealing tape | Bio-rad | 2239444 | To use with the 96-well skirted PCR plates for HRMA |
Phire Animal tissue direct PCR Kit (without sampling tools) | Thermo Fisher | F140WH | For obtaining genomic DNA and performing PCR |
Plastic Fly Vial Dividers | Genesee | 59-128W | |
Precision Melt Analysis Software | Bio Rad | 1845025 | Used for genotyping the mosquito DNA samples and analyzing the thermal denaturation properties of double-stranded DNA (see protocol step 3.3) |
SeqMan Pro | DNAstar Lasergene software | For multiple sequence alignment | |
Single-channel pipettor | Gilson | ||
Tweezers Dumont #5 11 cm | WPI | 14098 | |
White foam plugs | VWR | 60882-189 | |
Wide Drosophila Vials, Polystyrene | Genesee | 32-117 | |
Wide Fly Vial Tray, Blue | Genesee | 59-164B |