A setup for X-ray beam induced current measurements at synchrotron beamlines is described. It unveils the nanoscale performance of solar cells and extends the suite of techniques for multi-modal X-ray microscopy. From wiring to signal-to-noise optimization, it is shown how to perform state-of-the-art XBIC measurements at a hard X-ray microprobe.
X-ray beam induced current (XBIC) measurements allow mapping of the nanoscale performance of electronic devices such as solar cells. Ideally, XBIC is employed simultaneously with other techniques within a multi-modal X-ray microscopy approach. An example is given herein combining XBIC with X-ray fluorescence to enable point-by-point correlations of the electrical performance with chemical composition. For the highest signal-to-noise ratio in XBIC measurements, lock-in amplification plays a crucial role. By this approach, the X-ray beam is modulated by an optical chopper upstream of the sample. The modulated X-ray beam induced electrical signal is amplified and demodulated to the chopper frequency using a lock-in amplifier. By optimizing low-pass filter settings, modulation frequency, and amplification amplitudes, noise can efficiently be suppressed for the extraction of a clear XBIC signal. A similar setup can be used to measure the X-ray beam induced voltage (XBIV). Beyond standard XBIC/XBIV measurements, XBIC can be measured with bias light or bias voltage applied such that outdoor working conditions of solar cells can be reproduced during in-situ and operando measurements. Ultimately, the multi-modal and multi-dimensional evaluation of electronic devices at the nanoscale enables new insights into the complex dependencies between composition, structure, and performance, which is an important step towards solving the materials' paradigm.
In a world where the demand for electrical energy is constantly rising, a clean and sustainable energy source is increasingly necessary. One possibility to tackle these demands are photovoltaic (PV) systems1,2,3. For a directed and efficient way of developing next-generation solar cells, it is necessary to understand how the composition and structure of the solar cells affect their performance4. Typical questions in solar cell development include: Which types of defects are most detrimental, and where are they located5,6? Are there inhomogeneities in the elemental distribution, and what is their impact7,8,9? How do the solar cells change upon module assembly and aging10,11?
As a solar cell is only as good as its weakest part, it is especially important to understand the effect of compositional and structural variation on the performance in polycrystalline solar cells that suffer inherently from inhomogeneities7,8. This is particularly true for thin film (TF) solar cells, which contain absorber layers with crystallite sizes in the micrometer range. Here, the effect of grain boundaries on performance is of highest interest, but their small size and the fact that they are buried in an entire layer stack pose unique characterization challenges. Furthermore, the complex chemistry of multi-component absorber layers with co-existing phases and internal gradients require sophisticated characterization methods12.
Synchrotron-based hard X-ray microscopes are able to meet the characterization challenges of TF solar cells: they provide X-ray spot sizes down to the nanometer scale13,14,15,16 and the penetration depth of hard X-rays allows to probe the different device layers17, including buried absorber layers. With a wealth of different measurement techniques at a scanning X-ray microscope, it becomes possible to simultaneously study not just one, but many different aspects of solar cells within multi-modal measurements and to correlate the observed characteristics. For example, X-ray beam induced current (XBIC) measurements have successfully been combined with X-ray fluorescence (XRF)7,18,19, X-ray excited optical luminescence (XEOL)20,21, and X-ray diffraction (XRD)22 to correlate the electrical performance with composition, optical performance, and structure, respectively23.
During XBIC measurements of solar cells or other devices under test (DUT)24,25, the incident X-ray photons set off particle showers consisting of electrons and photons, resulting in a multitude of excited electron-hole pairs per incident X-ray photon in the semiconducting absorber material. Finally, the electron-hole pairs thermalize to the band edges of the solar cell absorber. Therefore, these X-ray excited charge carriers can be treated like charge carriers that are generated by the absorption of photons with energies just above the bandgap during normal solar cell operation, and the resulting current or voltage can be measured as X-ray beam induced current23,26,27 or voltage (XBIV)28,29 similar to more common measurements like electron-beam induced current (EBIC) or laser-beam induced current (LBIC). Consequently, the XBIC/XBIV signal not only depends on the thickness of the absorber layer, but also on the electric performance of the DUT, both at the microscopic and macroscopic level, including the local bandgap, Fermi-level splitting, and recombination. Thus, we are able to map local variations of the charge-carrier collection efficiency that is defined as the probability that an externally excited electron-hole pair in the absorber layer is collected at the electrical contacts of the DUT.
Note that only electron-hole pairs that are generated in the absorber layer of the DUT contribute to the XBIC/XBIV signal. Charge carriers generated in other layers such as the metallic contacts or substrate will immediately recombine, as they have no possibility of being separated by the junction. Therefore, other layers only affect XBIC/XBIV measurements via secondary effects such as parasitic X-ray absorption or the emission of secondary photons and electrons that may be re-absorbed in the absorber layer. In contrast, all layers potentially contribute to the XRF signal.
Given that the XBIC and XBIV signals can be small (often, variations in the sub-picoampere and nanovolt range are of interest), the signals are easily buried in noise. Therefore, we suggested to utilize lock-in amplification to extract the XBIC and XBIV signals30. For this purpose, the incoming X-ray beam is modulated by an optical chopper as indicated in Figure 1. This modulation carries over to the signal produced by the DUT. Before the signal is fed into the lock-in amplifier (LIA), a pre-amplifier (PA) is typically used to match the raw signal intensity with the range of the analog-to-digital converter at the input of the digital LIA. The LIA mixes the modulated measurement signal with the reference signal. By employing a low-pass filter, only frequencies close to the reference signal are passed through and amplified31. This allows for an effective extraction of the XBIC or XBIV signal from a noisy background.
In the protocol, we introduce the prerequisites and motions necessary for taking successful XBIC measurements including the raw signal (direct current, DC) and the modulated signal (alternating current, AC). Beyond describing technical details, we discuss an XBIC setup in the context of multi-modal measurements at beamline P06 at PETRA III13. Please note that, compared to most laboratory experiments, the environment of hutches at hard X-ray nanoprobes requires particular planning and consideration. Specifically, multi-modal measurements with nanometer-scale resolution challenge the experimentalists with a variety of specific constraints. For example, electronic noise is often present with great amplitudes from piezo-driven motors and other equipment, such as the power supplies of detectors. Furthermore, a multitude of devices and detectors needs to be arranged at optimized geometry without interfering with each other nor inducing vibrations. Figure 1 depicts a typical setup for XBIC measurements in combination with XRF and small/wide angle X-ray scattering (SAXS/WAXS) measurements.
In this chapter, we discuss first the relevance of general XBIC measurement settings with respect to noise (a) and scanning speed (b). Next, we put XBIC measurements into the context of multi-modal measurements and discuss aspects of X-ray beam induced damage (c) and specific challenges related to simultaneous measurements of multiple parameters (d). Finally, we compare XBIC measurements with related measurements using electron- and laser-beams as probes (e).
(a) Noise and Error
Although lock-in amplification enables a higher signal-to-noise ratio compared to direct amplification, it is critical to avoid the introduction of noise at all levels as has been repeatedly stressed throughout this manuscript. For further discussion, we refer to literature discussing the measurement of small electrical signals42,43,44,45. Although state-of-the-art lock-in amplifiers are based on digital signal processing today, most strategies to reduce noise using analog lock-in amplifiers still apply.
Summarizing, it should be kept in mind that cables are prone to act as antennae and thus introduce noise into the system. This is particularly true in the environment of X-ray nanoprobes, where strong electro-magnetic fields are often unavoidable, their sources may even remain unknown. As a consequence, cables should be kept as short as possible and oriented such that the induced noise level is minimized. Extra shielding of the signal cables may further reduce the noise level.
The proper contacting of the DUT is equally important for noise minimization. A clean and robust method with small contact points is wire bonding. For TF solar cells, this does not always work due to adhesion issues. Alternatively, conductive tape based on graphite, copper, or aluminum is suited for larger samples. In many cases, the best results are obtained with manual application of silver paint to contact thin copper, gold, or platinum wires to the device. While tape and graphite paste might not give the best contact, silver paint can easily short circuit the device and has to be deposited with utmost care. Polyimide tape can be used to prevent short-circuiting of front and back contact.
Note that the cabling layout from contacting to signal transport needs to be adapted to beamline-specific boundary conditions. For example, the layout depicted in Figure 1 with the pre-amplified signal being split to the LIA and to the V2F converters is risky, if the V2F converters are located outside of the hutch. In this case, the long cable between pre-amplifier and V2F converter can catch noise that is transferred to the LIA. Therefore, we distinguish three cases of common signal paths for XBIC or XBIV measurements:
Case A: XBIC is measured with a pre-amplifier, and the DC/AC signal is split after the PA as depicted in Figure 1. In this case, a current offset can be applied in the PA such that the signal is always positive, avoiding the need of recording the positive and negative signal via two separate V2F converters. As a drawback, this would reduce the available voltage acceptance range in the LIA and lead to reduced sensitivity.
Case B: Avoiding the splitting of the pre-amplified signal, which is only input to the LIA, an additional demodulator can be used in the LIA with a low-pass filter at the maximum value (i.e. not locking in to the modulation frequency) such that the pre-amplified signal can be effectively output to the DAQ unit as demonstrated in Figure 6A,E. In this case, a voltage offset on the output can be applied to both the AC and DC signal, avoiding the need of recording the positive and negative signal via two separate V2F converters. This has no major drawbacks apart from a reduction of the available frequency range of the V2F, which is rarely limiting.
Case C: XBIV is measured and the DC/AC signal is split between the DUT and the lock-in amplifier. In this case, no voltage offset on the DC signal can be applied without applying an unwanted bias voltage on the DUT, such that always two separate V2F converters are required for the positive and negative signal parts.
In all cases, where the negative and positive parts of a signal are recorded via two different V2F converters, the total XBIC or XBIV signal is obtained as the difference between the positive and negative channel. If a LIA with two or more demodulators is available, we typically prefer case B, as it minimizes the wiring of the raw signal and allows easy switching between XBIC and XBIV measurements.
The error of XBIC measurements highly depends on the equipment and settings used such that no error quantification can be given here. The absolute error is higher than one might expect because of experimental and systematic errors. This is particularly true if the XBIC signal is converted to charge collection efficiency by scaling with a constant as described in the protocol. For example, the empiric relation between bandgap and ionization energy described by α (see Eq. 4) suffers from significant scatter; photon flux measurements are often not available with absolute errors below 10%; and the nanoscopic structure of the DUT is poorly known. However, we emphasize that the strength of lock-in amplified XBIC and XBIV measurements lies in the great relative accuracy within maps or comparable measurements.
(b) Scanning Speed
In many measurement modes that are based on photon detection such as XRF or X-ray scattering, the signal intensity increases in first approximation linearly with the acquisition time, with accordingly increased signal-to-noise ratio. This is not true for XBIC measurements, where the window of possible scanning speeds is not dictated by count statistics but by more complex considerations such as carrier dynamics and device structure.
Nevertheless, slow measurements with many periods of modulated signal per pixel typically lead to the best signal-to-noise ratio in lock-in amplified XBIC measurements, and oversampling with smoothening during post-processing (e.g. by binning or applying filters) can further reduce noise levels if measurement time allows. However, apart from throughput considerations, further constraints can set lower limits to the measurement speed, including: (1) X-ray beam induced degradation (see the following section), or environment-induced sample changes during in-situ measurements often reduce the allowable dwell time. (2) Sample drift and reproducibility of stage movements can be limiting, particularly for measurements at the nanoscale. (3) Variations of the electromagnetic noise level may be outrun by faster measurements. (4) Whereas photon-counting measurements can easily be normalized to the incident photon flux, the XBIC signal (and even more so the XBIV signal) is only to some extent linear to the incident photon flux28. Therefore, normalization to the photon flux only compensates part of the effects from photon-flux variation, and one should avoid taking XBIC measurements (such as maps or time-series) while the flux is varied. This is particularly an issue when the storage ring is filled during an XBIC map.
If the XBIC measurement speed is not governed by other measurement modes (see section (d)), XBIC measurements are typically taken with the maximum speed that provides satisfying signal-to-noise ratio. Upper limits to the measurement speed are given by the following constraints: (1) A fundamental upper limit to the measurement speed is the response time of the DUT. Ultimately, the response time is limited by the charge-collection time. For most thin-film solar cells with charge-carrier lifetimes in the nano- or microsecond range, this is uncritical, but this has to be kept in mind for high-quality crystalline-silicon solar cells with lifetimes of several milliseconds. However, capacitance effects can increase the response time also of TF solar cells such that it can limit the measurement speed. (2) Rotating chopper blades that are used to modulate the X-ray beam have upper speed limits. Depending on their location in the X-ray beam, the beam size may be up to 1 mm wide, which defines the minimum period of the blade. If the chopper is operated in vacuum, the rotation frequency is rarely limiting, matching in some cases even the electron-bunch frequency. However, the operation of choppers at such speeds in vacuum is challenging, such that most choppers are operated in air. In this case, the rotating speed is limited by mechanical vibrations and ultimately by the speed of the outmost part of the blade that needs to be smaller than the speed of sound. In our experience, the chopping frequency is limited often to ~ 7000 Hz in air. (3) In many cases, the response time of the PA sets the upper limit of the measurement speed. As shown in Figure 4, fast rise times of the PA are required to translate the signal modulation from the chopper. For large amplification, low-noise current amplifiers are used, which have rise times up to 100 ms. With such rise times, the chopping frequency can be limited to few Hz, which would require dwell times of several seconds. Therefore, the best strategy is often to choose a lower amplification by the PA with a faster response time that matches the chopping frequency. Although this translates into smaller signal-to-noise levels after pre-amplification, lock-in amplification can often still retrieve a high-quality modulated signal.
As an example, the used PA provides a bandwidth of more than 10 kHz for amplification in the µA/V range, even for the low-noise setting37. This allows chopping at the kHz range and measurement speeds up to the 100-Hz range with a low-pass filter with a cut-off frequency between the scanning and chopping frequency. These are measurement conditions we often utilize.
To avoid measurement artifacts, it is critically important to analyze the signal along the amplification chain: whereas limitation by the low-pass filter of the LIA can easily be detected as line-artifacts in maps (smearing out of the XBIC signal across several pixels), the system response of the DUT and PA requires inspection of the signal by a scope, which can be integrated in the LIA.
(c) Beam Damage
X-ray beam induced damage is a common issue and has been discussed for many systems, from biological samples to silicon solar cells and detectors46,47. Although inorganic semiconductors are generally more robust against X-ray irradiation compared to organic semiconductors or biological systems, X-ray beam induced damage is common also in thin-film solar cells. Specifically, we have observed X-ray beam induced damage of solar cells with CdTe, CIGS29, perovskite18, and organic absorber layers. Note that the electronic response of DUT like solar cells is sensitive to defect concentrations below the ppm level, where charge-carrier recombination affects the performance without apparent chemical damage.
Therefore, it is generally required to test the sensitivity of a DUT to beam damage. In practice, we evaluate the X-ray beam induced degradation of any DUT prior to actual XBIC measurements, and establish conditions that allow measurements to be the least influenced by degradation effects.
Different strategies exist to cope with X-ray beam induced damage, but what they all have in common is that they aim to reduce the radiation dosage at a measurement spot prior to the evaluation of the performance there. In other words, the objective is to outrun degradation following the paradigm "measure faster than the DUT degrades". The strategies include: (1) Use short dwell times. (2) Increase the step size, reducing the measurement resolution. (3) Reduce the X-ray beam intensity by attenuation filters. Depending on the beamline and DUT, different approaches may be chosen or a combination thereof. For instance, the lack of fast shutters or fly-scan modes exclude (1), and wide-spread X-ray beam profiles such as those generated by zone plates can lead to significant degradation far away from the central beam position.
Fortunately, most degradation mechanisms only lead to locally enhanced charge carrier recombination. This limits the lateral effect of the degradation to the diffusion length of the charge carriers, and XBIC measurements further away from the degraded areas remain nearly unaffected. If, instead, degradation mechanisms lead to local shunting of the DUT, further XBIC measurements would be seriously hampered. To keep the deposited radiation dosage to a minimum, the critical measurements should be performed first on a fresh spot and then afterwards, photon-hungry methods, like XRF, that are more indifferent to beam damage, may be utilized in the same location.
(d) Multi-Modal Measurements
The compatibility of XBIC with further measurement modes enables direct point-by-point correlation of the electrical performance with simultaneously assessed parameters23. Here, we shortly discuss the combination of XBIC measurements with XBIV, XRF, SAXS, WAXS, and XEOL measurements. The combination with further measurement modes such as electron yield or holography can easily be imagined, but these modes are not generally compatible with the setups or modes of the scanning measurements.
Even if the geometrical arrangement of detectors and samples for simultaneous measurement of XBIC, XBIV, XRF, SAXS, WAXS, and XEOL is possible, there are fundamental and practical aspects prohibiting the simultaneous assessment of all modes.
(1) The state of the solar cell prohibits the simultaneous measurement of XBIC (short circuit) and XBIV (open circuit) measurements. As XEOL48,49 measures the radiative recombination of electron-hole pairs, a measured current of the solar cell (XBIC) would be a competitive process. Therefore, XEOL measurements are typically conducted under open-circuit condition, which is compatible with simultaneous XBIV measurements.
(2) If beam damage is an issue for XBIC or XBIV measurements, they may not be combined with photon-hungry techniques such as XRF or XEOL. As a rule of thumb, beam damage effects are first visible in the electrical (XBIC & XBIV) and the optical (XEOL) performance, being sensitive to charge-carrier recombination via electronic defects. Second, structural damage occurs (visible in SAXS & WAXS), followed by compositional modification visible in XRF.
(3) Although chopping the X-ray beam is generally compatible with all measurement modes, it can lead to artifacts: first, the integrated photon flux per pixel varies by the integrated flux passing the chopper wheel in one period. This effect becomes larger with a smaller ratio between the chopping and the scanning frequency. Second, the interaction between the chopper wheel and the X-ray beam can lead to scattered, diffracted, and fluorescent photons. Third, the integrated photon flux is reduced by 50%, which is particularly critical for photon-hungry measurement modes.
As a consequence of these considerations, the ideal measurement scheme depends on the given DUT and prioritization of measurement modes. However, it is often wise to start with a measurement optimized for XBIC. If lock-in amplified XBIV is required, this is typically the second scan. Otherwise, the chopper can be removed, and all other measurements, including standard XBIV, can be performed with longer dwell time as required for the most photon-hungry technique. Ideally, XRF data are measured during all scans, which allows for image registration in post-processing to account for sample drift.
(e) Different Probes for Beam-Induced Measurements
There are alternative probes to X-ray beams for the assessment of the spatially resolved electrical performance of a DUT with specific advantages and disadvantages. Therefore, a qualitative comparison of XBIC with electron-beam induced current (EBIC) and laser-beam induced current (LBIC) as measured in electron microscopes or with optical setups is given in Table 2.
The electron-hole pair generation by a laser comes closest to the outdoor operation of solar cells. However, the spatial resolution of LBIC is fundamentally limited by the wavelength of the laser. EBIC measurements offer a greater spatial resolution that is typically limited by the interaction radius of the electron beam with the DUT. The main drawback of EBIC measurements is their surface sensitivity, hindering the assessment of the absorber layer performance through the layer stack or even in encapsulated devices. Furthermore, uneven surfaces of the DUT in combination with non-linear secondary-electron emission effects often lead to distorted EBIC results. In contrast, XBIC measurements hardly suffer from topological variations, as most signal is generated deep in the bulk material and surface-charge effects are mitigated by proper grounding.
All three beam-induced techniques have in common that charge injection is highly inhomogeneous, peaking at the beam position. As a consequence, the excess carrier concentration and current density are inhomogeneously distributed. In a simplified picture, the majority of the solar cell operates in dark, and a small spot operates at a high injection level that can reach hundreds of sun equivalents for focused beams. The injection-level distribution depends not only on the beam size and shape, but also on the beam energy, device stack, and time structure of the injection. So far, the X-ray beam has been treated as a continuous beam, which is justified for charge-carrier collection processes that are slower than microseconds. However, synchrotron-sourced X-rays consist of sub-100-ps pulses with intensities and pulse frequency depending on the storage-ring fill pattern. Although we have not noticed any impact of the fill pattern on comparably slow XBIC measurements, the short-term injection level does depend on it. In contrast, one can make use of the time structure of X-rays: similar as has been demonstrated for time-resolved XEOL21, one can imagine time-resolved XBIC or XBIV measurements, or locking the XBIC/XBIV signal into the electron-bunch frequency.
An adequate discussion of the consequences of inhomogeneous injection levels requires full 3D simulation of all relevant beam and device parameters including the convolution of the time-dependent injection level with the 3D mobility and lifetime in the DUT, which is beyond the scope of this manuscript. However, it is conceptually the same for all beam-induced current and voltage measurements and we refer to the literature discussing the injection-level dependence of EBIC50 and LBIC51 measurements.
The negative consequences of local charge injection can experimentally be mitigated by the application of bias light with the intensity of 1 sun equivalent, and beam-induced excitation adding only a negligible amount of excess charge carriers. In practice, this concept is technologically limited by the dynamic reserve of 100-120 dB in state-of-the-art lock-in amplifiers, which corresponds to a signal-to-noise ratio of 105 to 106. While this suffices for devices of size comparable to the beam size, it does not allow the application of bias light at relevant levels for macroscopic devices. The obvious solution is to decrease the sample size. Unfortunately, this is often limited by electrical border effects up to several hundred micrometers off the sample border or contact points.
Note also that one can make use of the injection-level dependence of XBIC measurements: similar to EBIC and LBIC, performing injection-level series by varying the X-ray beam intensity can unveil information about dominant recombination mechanisms and charge carrier diffusion52,53.
In conclusion, the penetration depth of X-rays combined with the high spatial resolution makes XBIC the most fitting technique to study DUT with buried structures such as TF solar cells in a correlative microscopy approach. The interaction radius of XBIC measurements is typically smaller than for EBIC, and the spatial resolution is often limited by the diffusion length of the charge carriers. The main drawback of XBIC measurements is the limited availability of X-ray nanoprobes.
The authors have nothing to disclose.
We greatly acknowledge J. Garrevoet, M. Seyrich, A. Schropp, D. Brückner, J. Hagemann, K. Spiers, and T. Boese from the Deutsches Elektronen-Synchrotron (DESY) and A. Kolditz, J. Siebels, J. Flügge, C. Strelow, T. Kipp, and A. Mews from the University of Hamburg for supporting measurements at beamline P06 at PETRA III, DESY; M. Holt, Z. Cai, M. Cherukara, and V. Rose from the Argonne National Laboratory (ANL) for supporting measurements at beamline 26-ID-C at the Advanced Photon Source (APS) at ANL; D. Salomon and R. Tucoulou from the European Synchrotron Radiation Facility (ESRF) for supporting measurements at beamline ID16B at ESRF; R. Farshchi, D. Poplavkyy, and J. Bailey from MiaSolé Hi-Tech Corp., and E. Avancini, Y. Romanyuk, S. Bücheler, and A. Tiwari from the Swiss Federal Laboratories for Materials Science and Technology (EMPA) for providing solar cells. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. We acknowledge the European Synchrotron Radiation Facility (Grenoble, France) for provision of synchrotron radiation facilities. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
BNC cabling and connectors | From generall cable suppliers | ||
Chopper blade | Thorlabs | MC1F10HP | Apart from technical compatibility of the chopper wheel with the chopper system, it should be checked that the chopper blade sufficiently blocks the X-ray beam. |
Conductive silver paint | Conrad | 530042 | Alternative products can be obtained from Pelco and others |
Copper wires | From cable suppliers for contacting of the solar cell | ||
Current Preamplifier | Standford | SR570 | Alternatives include the Keithley 487 or 6487 Picoammeter. |
Device under test (DUT) | Suitable device for XBIC measurements. | ||
Holder with printed circuit board | Custom design | ||
Kinematic sample mount | Thorlabs | KB25/M | Optional, allows easy positioning and changing of sample. Alternatives include the M-BK-1A from Newport |
Lock-in Amplifier | Zurich Instruments | UHFLI or MFLI | Whereas the MFLI has current preamplifiers included, the UHFLI requires an external current preamplifier but offers more options. Therefore, the UHFLI was used for the presented experiment. |
Measurement control/data acquisition unit | Available at different synchrotrons. | ||
Optical Chopper | Thorlabs | MC2000B(-EC) | Alternatives include the choppers SR540 from Stanford Research Systems, or model 3502 from Newport. |
Polyimide tape | Rolls with different widths and thicknesses are available | ||
X-ray source | Available at different synchrotrons |