Summary

植物生长与农杆菌介导的植物浸水转化

Published: January 07, 2019
doi:

Summary

利用花浸法进行农杆菌介导的转化, 可以成功地利用这种方法, 创造出稳定的极端植物模型schrenkiella parvula的转基因线。考虑到不同的生长习性和四肢的生理特性, 我们提出了一种从这种方法中修改的方案。

Abstract

夏氏叶炎是一种适应各种非生物胁迫的极端植物, 包括多重离子毒性胁迫。尽管有高质量的基因组资源可用于研究植物如何适应环境压力, 但由于缺乏可行的转化系统, 其作为功能基因组学模型和工具的价值受到限制。在这个协议中, 我们报告如何产生稳定的转基因s.类似线使用农杆菌介导的花浸法。我们修改了用于罗非鱼的转化协议, 以考虑到罗非鱼的独特特征, 如不确定的开花习惯和高表观蜡含量的叶子。简单地说, 在种植前,将其在4°c 下分层5天。植物生长在14小时的光和10小时黑暗的光周期和 130μmol m-2-1 的光强, 在 22°c 至24°c。选择了8至9个具有多个花序的周龄植物进行改造。这些花序被浸入携带 mp90rk质粒的农杆菌 gv3101 的浸润溶液中。我们在三到四周的时间间隔内进行了两轮插花, 以提高转化效率。t1 种子在萌发前在容器中收集并干燥四周, 以筛选出候选转化线。对 basta 的抗性被用来筛选 t1 植物。我们在两个为期一周的工厂喷洒了三次基本服务溶液, 间隔为三天, 以减少假阳性。对存活的单个植物进行了基本程度的空投试验, 以确定真正的阳性转化物。转化效率为 0.033, 每繁殖 10, 000 种 t1 种子产生3-4 个转基因植株。

Introduction

在这个协议中, 我们描述了生长和建立稳定的转基因线的极端植物模型雪伦基耶拉帕维拉。有效的转化系统的可用性是任何多功能遗传模型的标志。在极端环境中茁壮成长的植物, 被称为极端植物, 为了解植物对环境压力的适应提供了重要资源。施伦基耶拉·帕弗拉(原thellungiella parvulaeutrema parvula) 就是这样一种极端植物模型, 具有不断扩展的基因组资源1,2, 3,4, 5.然而, 在已发表的研究中, 还没有报道 s . parvula 的转化协议。

帕拉维的基因组是布拉西卡科 (芥末科) 首次公布的极生植物基因组, 并与非极生植物模型拟南芥1进行了广泛的整体基因组联合。因此,对塔利亚纳阴道的比较研究可以受益于在塔利亚纳进行的大量基因研究, 以便对阴道基因组是如何进化和调控的做出信息性假设以应对极端环境压力5,6,7。在已知野生亲缘植物中,黄花是最耐盐的物种之一 (基于土壤 ncl ld50)。除了氯化钠耐受性外, 在高浓度对大多数植物有毒的情况下, s. parvula还存活并完成其生命周期.为了应对其自然栖息地普遍存在的非生物胁迫, 它进化了各种性状, 其中一些已在生化或生理水平8,9,10, 11个

自2010年以来, 有400多种同行更新的出版物将s. parvula作为目标物种, 或将其用于与其他植物基因组的比较。然而, 通过更仔细地研究已经进行了哪些类型的研究, 可以确定一个明显的瓶颈。这些报告大多讨论了在未来研究中潜在用途, 或将其用于比较基因组或系统学研究。由于没有为s. parvula制定概念验证转换协议, 尽管迄今为止已将最高质量的植物基因组之一组装和组装, 但该协议尚未用于功能基因组研究。注释成染色体级的假分子1

农杆菌介导的花浸转化方法已成为在塔利亚纳中最广泛使用的产生植物基因的方法, 开发可复制的转化系统是其成功的关键因素。遗传模型12,13。然而, 并非所有的布拉西卡科物种都已被证明是成功地转化使用了为a.thaliana 开发的花浸法。特别是包括白斑的 Brassicaceae 系 ii 种一直对以植物浸渍为基础的转化方法14,15

由于罗非鱼开花习性不确定, 加上叶片形态狭窄, 采用标准农杆菌介导的花浸转化方法具有挑战性。在这项研究中, 我们报告了我们为s. parvula的可重复转化而开发的修改后的协议。

Protocol

1. 植物生长 种子灭菌 (可选) 在双蒸馏水 (ddh2o)中制备50% 的漂白剂, 在50毫升管中制备1或2滴非离子洗涤剂 (见材料表)。将管反转多次, 混合溶液。请注意:最好在具有紫外线灭菌表面的层流柜中进行种子灭菌15分钟。 在 1.5 ml 管中加入漂白剂溶液, 加入 ~ 100–200 s. parvula 种子。充分混合, 让管坐5分钟。 从试管中?…

Representative Results

我们开发了一个转化协议, 可以在150天内收获 t 0 种子, 使用的是从 a. thaliana的花浸法修改的方法.图 1显示了时间线和s. parvula 植物的摘要, 它们代表了通过花浸执行转换的最佳阶段。我们选择了在萌发后60-80天内具有70-80 朵花的植物作为转化的目标阶段。在这一阶段, 少量先前存在的开放或受精卵和花在植物浸润之前被花<em…

Discussion

植物的生理状态对转化效率有显著影响.利用健康而有活力的植物进行转化是成功转化关键要求。与理想转化的健康植物相比, 水或光有压力的植物的花将更少 (图 1, 中心面板)。低于 130μmol m-2 s-1 的光强下生长, 但植物往往更脆弱;这样的植物会导致更多的流产花后, 花浸水。帕鲁拉倾向于以高于塔利亚纳的速度…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家科学基金会 mcb 1616827 奖的支持。

Materials

Agar VWR International, Radnor, PA 90000-762 Bacto Agar Soldifying Agent, BD Diagnostics
B5 vitamins Sigma-Aldrich, St. Louis, MO G1019 Gamborg’s Vitamin Solution
Desiccant W A Hammond Drierite, Xenia, OH 22005 Indicating DRIERITE 6 mesh
Destination vector for plant transformation TAIR Vector:6531113857 pKGWFS7
Electroporation cuvette USA Scientific 9104-5050 Electroporation cuvette, round cap, 0.2 cm gap
Electroporator BIO-RAD Laboratories, Hercules, CA 1652100 MicroPulser Electroporator
Fertilizer beads Osmocote Garden, Marysville, OH N/A Osmocote Smart-Release Plant Food Flower & Vegetable
Gel extraction kit iNtRON Biotechnology, Boston, MA 17289 MEGAquick-spin Total fragment DNA purification kit
Gentamicin Sigma-Aldrich, St. Louis, MO G1914-5G Gentamicin sulfate
Glufosinate-ammonium (11.3%) herbicide (BASTA) Bayer environmental science, Montvale, NJ N/A FINALE herbicide
Kanamycin VWR International, Radnor, PA 200004-444 Kanamycin monosulfate
MES Bioworld, Dublin, OH 41320024-2 MES, Free Acid
MS salt MP Biomedicals, Santa Anna, CA 092621822 Hoagland's modified basal salt mixture
N6-benzylaminopurine (BA)  Sigma-Aldrich, St. Louis, MO B3274 6-Benzylaminopurine solution
NaCl Sigma-Alrich S7653 Sodium chloride
Non-ionic detergent Sigma-Aldrich, St. Louis, MO 9005-64-5 TWEEN 20 
Plasmid isolation kit Zymo Research, Irvine, CA D4036 Zyppy Plasmid Kits
Recombinase enzyme mix kit Life Technology 11791-020 Gateway LR Clonase II Enzyme mix
Rifampicin Sigma-Aldrich, St. Louis, MO R3501-1G Rifampicin, powder, >= 97% (HPLC)
Shaking incubator ThermoFisher Scientific, Waltham, MA SHKE4450 MaxQ 4450 Benchtop Orbital Shakers
Soil mix Sun Gro SUN239223328CFLP Sun Gro Metro-Mix 360 Grower Mix
Spectinomycin VWR International, Radnor, PA IC15206705
Sterile 50ml conical tubes USA Scientific, Ocala, FL 1500-1811 50 ml conical screw cap tubes, copolymer, racks, sterile
Sucrose VWR International, Radnor, PA 57-50-1 Sucrose, ACS
Surfactant solution Lehle seeds, Round Rock, TX VIS-02 Silwet L-77
Topoisomerase-based cloning kit Life Technologies, Carlsbad, CA K240020 pENTR/D-TOPO Cloning Kit, with One Shot TOP10 Chemically Competent E. coli
Tryptone VWR International, Radnor, PA 90000-282 BD Bacto Tryptone, BD Biosciences
Yeast Extract VWR International, Radnor, PA 90000-722  BD Bacto Yeast Extract, BD Biosciences

References

  1. Dassanayake, M., et al. The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics. 43 (9), 913-918 (2011).
  2. Oh, D. -. H., Dassanayake, M., Bohnert, H. J., Cheeseman, J. M. Life at the extreme: lessons from the genome. Genome Biology. 13 (3), 241 (2012).
  3. Whited, J. The Next Top Models. Cell. 163 (1), 18-20 (2015).
  4. Dassanayake, M., Yun, D. O. D., Bressan, R. A., Cheeseman, J. M., Bohnert, J. H. The scope of things to come: New paradigms in biotechnology. Plant Biotechnology and Agriculture: Prospects for the 21st Century. , 19-34 (2009).
  5. Dittami, S. M., Tonon, T. Genomes of extremophile crucifers: New platforms for comparative genomics and beyond. Genome Biology. 13 (8), 166 (2012).
  6. Amtmann, A. Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant. 2 (1), 3-12 (2009).
  7. Oh, D. -. H., Hong, H., Lee, S. Y., Yun, D. -. J., Bohnert, H. J., Dassanayake, M. Genome structures and transcriptomes signify niche adaptation for the multiple-ion-tolerant extremophyte Schrenkiella parvula. Plant Physiology. 164 (4), 2123-2138 (2014).
  8. Orsini, F., et al. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. Journal of Experimental Botany. 61 (13), 3787-3798 (2010).
  9. Uzilday, B., Ozgur, R., Sekmen, A. H., Yildiztugay, E., Turkan, I. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Annals of Botany. 115 (3), 449-463 (2015).
  10. Teusink, R. S., Rahman, M., Bressan, R. A., Jenks, M. A. Cuticular waxes on Arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula. International Journal of Plant Sciences. 163 (2), 309-315 (2002).
  11. Jarvis, D. E., Ryu, C. H., Beilstein, M. A., Schumaker, K. S. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula. Molecular Biology and Evolution. 31 (8), 2094-2107 (2014).
  12. Clough, S. J., Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal. 16 (6), 735-743 (1998).
  13. Koornneef, M., Meinke, D. The development of Arabidopsis as a model plant. Plant Journal. 61 (6), 909-921 (2010).
  14. Bai, J., Wu, F., Mao, Y., He, Y. In planta transformation of Brassica rapa and B. napus via vernalization-infiltration methods. Protocol Exchange. 10, 1028 (2013).
  15. Sparrow, P. A. C., Goldsack, C. M. P., Østergaard, L. Transformation technology in the Brassicaceae. Genetics and Genomics of the Brassicaceae. , 505-525 (2011).
  16. Hoagland, D. R., Arnon, D. I. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347 (347), 1-32 (1950).
  17. Saiki, R., et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239 (4839), 487-491 (1988).
  18. Sun, Y., Sriramajayam, K., Luo, D., Liao, D. J. A Quick, cost-free method of purification of dna fragments from agarose gel. Journal of Cancer. 3, 93-95 (2012).
  19. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 74 (12), 5463-5467 (1977).
  20. Bertani, G. Studies on Lysogenesis I. The mode of phage liberation by lysogenic Eschericia coli. Journal of Bacteriolgy. 62 (3), 293-300 (1951).
  21. Koncz, C., Martini, N., Szabados, L., Hrouda, M., Bachmair, A., Schell, J. Specialized vectors for gene tagging and expression studies. Plant Molecular Biology Manual. , 53-74 (1994).
  22. Weigel, D., Glazebrook, J. Transformation of Agrobacterium using electroporation. Cold Spring Harbor Protocols. 2006 (30), (2006).
  23. Murray, M. G., Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 8 (19), 4321-4326 (1980).
  24. Inan, G. Salt cress. a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 135 (3), 1718-1737 (2004).
  25. Ghedira, R., De Buck, S., Nolf, J., Depicker, A. The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. Molecular Plant-Microbe Interactions. 26 (7), 823-832 (2013).
  26. Shaohong, F. U., Xianya, W. E. I., Yingze, N. I. U., Shixing, G. U. O. Transformation of Brassica napus with the method of floral-dip. Biotechnology: Genomics and Its Applications. , 45-49 (2005).
  27. Li, J., Tan, X., Zhu, F., Guo, J. A rapid and simple method for Brassica napus floral-dip transformation and selection of transgenic plantlets. International Journal of Biology. 2 (1), 127 (2010).
  28. Li, H. Q., Xu, J., Chen, L., Li, M. R. Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Plant Cell Reports. 26 (10), 1785-1789 (2007).
  29. Wu, G., Rossidivito, G., Hu, T., Berlyand, Y., Poethig, R. S. Traffic lines: New tools for genetic analysis in Arabidopsis thaliana. Genetics. 200 (1), 35-45 (2015).

Play Video

Cite This Article
Wang, G., Pantha, P., Tran, K., Oh, D., Dassanayake, M. Plant Growth and Agrobacterium-mediated Floral-dip Transformation of the Extremophyte Schrenkiella parvula. J. Vis. Exp. (143), e58544, doi:10.3791/58544 (2019).

View Video