The presence of cyanobacterial toxins in fresh water reservoirs for human consumption is a major concern for water management authorities. To evaluate the risk of water contamination, this article describes an protocol for the in-field detection of cyanobacterial strains in liquid and solid samples by using an antibody microarray chip.
Die globale Erwärmung und Eutrophierung machen einige Wasserökosysteme als wahre Bioreaktoren verhalten, die eine schnelle und massive Cyanobakterien Wachstum auslösen; dies hat relevanten gesundheitlichen und wirtschaftlichen Folgen. Viele Cyanobakterien Stämme sind toxin Produzenten, und nur wenige Zellen sind notwendig, irreparable Schäden an der Umwelt zu induzieren. Daher Wasserkörper Behörden und Verwaltungen erfordern eine schnelle und effiziente Frühwarnsysteme zuverlässige Daten Bereitstellung ihrer präventiven oder kurativen Entscheidungen zu unterstützen. Dieses Manuskript berichtet ein experimentelles Protokoll für das in-Feld Nachweis von Toxin produzierenden Cyanobakterien Stämme durch einen Antikörper Microarray-Chip mit 17-Antikörpern (Abs) mit taxonomische Auflösung (CYANOCHIP) verwendet wird. Hier wird ein Multiplex-Fluoreszenz-Sandwich-Microarray-Immunoassay (FSMI) für die gleichzeitige Überwachung von 17 Cyanobakterien Stämme häufig blühen in Süßwasserökosystemen gefunden, einige von ihnen Toxin Produzenten, beschrieben. Ein Mikroarray mit mehrerenweise identisch Replikate (bis zu 24) des CYANOCHIP wurde auf einem einzigen Objektträger gedruckt, um gleichzeitig eine ähnliche Anzahl von Proben zu testen. Flüssige Proben können entweder durch direkte Inkubation mit dem Antikörper (Abs) oder nach der Zellkonzentration durch Filtration durch eine 1- bis 3-um-Filter getestet werden. Feste Proben, wie Sedimente und Boden Gesteinen, werden zuerst von einem handgehaltenen Ultraschallgerät in einem Inkubationspuffer homogenisiert und dispergiert. Sie werden dann gefiltert (5 bis 20 & mgr; m), um das Grobmaterial zu entfernen, und das Filtrat wird inkubiert mit ABS. Immunreaktionen werden durch eine abschließende Inkubation mit einer Mischung aus 17 fluoreszenzmarkierten Abs offenbart und werden von einem tragbaren Fluoreszenzdetektor gelesen. Der gesamte Vorgang dauert ca. 3 Stunden, die meisten davon auf zwei 1-h Inkubationszeiten entspricht. Der Ausgang ist ein Bild, in dem helle Flecken auf den positiven Nachweis von cyanobakteriellen Markierungen entsprechen.
Der Nachweis und die Überwachung von Mikroorganismen in komplexen natürlichen mikrobiellen Gemeinschaften sind von entscheidender Bedeutung in vielen Bereichen, einschließlich der Biomedizin, die Umweltökologie und Astrobiologie. Cyanobakterien sind prokaryotische Mikroorganismen bekannt für ihre Fähigkeit , Blüten (übermäßige Proliferation) von Zellen in frischem Wasser zu bilden. Sie sind allgegenwärtig, und viele Arten sind in der Lage, Giftstoffe zu produzieren, was sich nicht nur auf ein potenzielles Risiko für die menschliche Gesundheit, sondern auch zu einer ökologischen Auswirkungen. In dieser Hinsicht ist es wichtig , eine schnelle und empfindliche Verfahren zur Früherkennung von Cyanobakterien und / oder deren Toxine in Boden und Wasser zu entwickeln. Zu diesem Zweck wird ein Multiplex-Fluoreszenz-Sandwich-Microarray-Immunoassay (FSMI) wurde als ein Werkzeug entwickelt für die Wasser Manager ihnen bei der Entscheidungsfindung zu helfen und damit in Programme richtige Wassermanagement.
Ein breites Spektrum von Methoden entwickelt worden, Cyan zu erkennen und zu identifizierenobacterial Zellen und Cyanotoxine in Boden und Wasser, einschließlich der optischen Mikroskopie, Molekularbiologie und immunologischen Techniken. Diese Verfahren können sehr unterschiedlich in den Informationen, die sie liefern. Mikroskopische Techniken basieren auf Zellmorphologie und den Nachweis von in vivo – Fluoreszenz von cyanobakteriellen Pigmente, wie Phycocyanin oder 1 Chlorophyll. Obwohl sie schnell und billig Methoden für die Echtzeit und häufige Überwachung sind , die über die Art und Anzahl der Cyanobakterien in einer Probe vorhanden informieren, geben sie keine Informationen über die mögliche Toxizität. Außerdem erfordern sie ein gewisses Maß an Know – how, wenn man bedenkt , daß es oft sehr schwierig ist , zwei zwischen eng verwandten Arten zu unterscheiden. Um diese Einschränkungen zu, Lichtmikroskopie zu überwinden muss sowohl durch die Identifizierung und Quantifizierung von Cyanotoxine biologischen und biochemischen Screening-Assays und physikalisch-chemischen Methoden begleitet werden.
<pclass = "jove_content"> Enzyme-linked Immunosorbent Assays (ELISA), Protein-phosphat Hemmtests (PPIA) und neurochemische Tests in Mäusen sind Beispiele für biochemische Screening-Assays zum Nachweis von Cyanotoxine. Während die ersten beiden schnelle und empfindliche Methoden sind, haben Fehlalarmen beschrieben worden bei Verwendung von ELISA und PPIA Tests auf drei Arten von Toxinen sind eingeschränkt. Die Maus-Bioassay ist eine qualitative Technik mit geringer Empfindlichkeit und Präzision, und spezielle Lizenzierung und Ausbildung erforderlich ist. Darüber hinaus gibt es nicht Informationen über die Art von Toxinen in einer Probe vorhanden. Cyanotoxine kann durch andere analytische Verfahren, wie Hochleistungs-Flüssigkeitschromatographie (HPLC), Flüssigkeitschromatographie-Massenspektrometrie (LC-MS), Gaschromatographie (GC), Gaschromatographie-Massenspektrometrie (GC-MS) identifiziert und quantifiziert werden, oder Matrix-unterstützte Laser-Desorption / Ionisations-Flugzeit (MALDI-TOF). Dies ist jedoch nur möglich, wenn Referenzstandards, die brauchen werdened einzelnen Toxinkonzentrationen in komplexen Proben zu bestimmen, sind 3 verfügbar, 4. Darüber hinaus sind diese Methoden zeitaufwendig; erfordern teure Ausrüstung, Verbrauchsmaterialien und Probenvorbereitung; und muss von erfahrenen und spezialisierten Personal durchgeführt werden.Molecular-basierte Methoden seit Jahrzehnten angewendet wurden zu erfassen, zu identifizieren und zu quantifizieren Cyanobakterien und ihre entsprechenden Cyanotoxine dank der Sequenzinformation in den Genomdatenbanken veröffentlicht (zB National Center for Biotechnology Information, NCBI). Unter diesen Verfahren sind solche auf Basis der Polymerase-Kettenreaktion (PCR), die den Entwurf von Sätzen von Primern für die DNA-Amplifikation erfordert und hängen von Vorwissen von DNA-Sequenzen verschiedener Spezies Cyanobakterien. Während Gendetektion, wie das phycocyanin Operon, auf der Gattungsebene, um eine genaue Identifizierung führt, sind einige Arten oder Stämme unentdeckt mitdiese Methode. Jedoch Toxin-kodierenden Gene, wie diejenigen , auf die Microcystin – Operon gehören, ermöglichen die Identifizierung von Toxinen in Proben , in denen die Hersteller sind knapp 5. Nichtsdestoweniger ist der Nachweis von Toxin-Marker durch PCR nicht notwendigerweise Toxizität in die Umwelt bedeuten. Darüber hinaus entwickelt die Menge der Primer das gesamte Spektrum der Arten von Cyanobakterien und Toxinproduzenten in einer Probe zu analysieren ist noch unvollständig, und weitere Studien müssen zu identifizieren unbekannte Arten erfolgen. Andere molekulare Techniken sind nicht auf PCR-Basis, wie Fluoreszenz in situ Hybridisierung (FISH) und DNA – Mikroarrays.
In den letzten zwei Jahrzehnten hat sich Microarray-Technologie Bedeutung in vielen Bereichen Anwendung gewonnen, vor allem in der Umweltüberwachung. DNA – Mikroarrays ermöglichen eine Unterscheidung zwischen Arten und Analyten 4, 6, 7 </sup>, 8, 9, 10, aber sie sind sehr mühsam und zeitraubenden Aufgaben betrachtet , die mehrere Stufen (zB Microarray – Leistung, DNA – Extraktion, PCR – Amplifikation und Hybridisierung) beinhalten. Aus diesem Grund weniger zeitraubend Assays basieren auf Antikörpern, wie Sandwich- und kompetitive immunologische Mikroarrays sind ein wesentlicher und zuverlässige Hochdurchsatz – Verfahren zum Nachweis von mehreren Analyten Umwelt 11, 12, 13 geworden. Die Fähigkeit von Antikörpern, spezifisch ihre Zielverbindungen erkennen und geringe Mengen an Analyten und zum Nachweis von Proteinen, zusammen mit der Möglichkeit, Antikörper gegen nahezu jede Substanz, stellen Antikörper-Mikroarrays eine leistungsstarke Technik für Umweltzwecke zu erzeugen. Darüber hinaus analysiert die Fähigkeit, mehrere erreichen in alsingle Assay, mit Nachweisgrenzen von ppb bis hin zu ppm, ist einer der wichtigsten Vorteile dieses Verfahrens 14.
Antikörper-basierte Biosensoren haben sich als empfindliche und schnelle Werkzeuge für die Detektion von einer Vielzahl von Pathogenen und Toxinen in der Umweltüberwachung zu 15, 16, 17, 18, 19, 20, 21. Während DNA-Verfahren mehrere Schritte umfassen, die Antikörper-basierte Mikroarrays erfordern nur eine geringe Probenvorbereitung, die auf einem kurzen Lyseschritt in einem geeigneten Lösungspuffer hauptsächlich basiert. Delehanty und Ligler 15 berichtet , die den gleichzeitigen Nachweis von Proteinen und bakteriellen Analyten in komplexen Mischungen auf der Basis eines Antikörper – Sandwich – Immunoassay geeignet zum Nachweis einer Proteinkonzentration von 4 ppb eind 10 4 cfu / ml Zellen. Szkola et al. 21 weisen eine günstige und zuverlässige Multiplex- Microarray zur gleichzeitigen Detektion von proteotoxins und kleine Toxine, Verbindungen entwickelt , die in der biologischen Kriegsführung verwendet werden könnten. Sie detektiert Konzentrationen von Ricintoxin, mit einer Nachweisgrenze von 3 ppb, in weniger als 20 min. Vor kurzem hat die CYANOCHIP, ein Antikörper – Microarray-basierten Biosensor für die in – situ – Detektion von toxischen und nicht toxischen Cyanobakterien, wurde 22 beschrieben. Dieses Mikroarray ermöglicht die Identifizierung von potentiellen Cyanobakterienblüten, meist in Wasserumgebungen, die mikroskopisch identifiziert schwierig sind. Die Nachweisgrenze des Mikroarrays ist 10. Februar – 10. MÄRZ Zellen für die meisten Arten, dieses Biosensors in ein kostengünstiges Werkzeug für die Multiplex – Detektion und Identifizierung von Cyanobakterien drehen, auch auf Artenebene. Alle diese Eigenschaften machen den Antibody Microarray-Technik und insbesondere in dieser Arbeit vorgestellten Verfahren eine schnellere und einfachere Methode zu den oben genannten Techniken verglichen.
Diese Arbeit stellt zwei Beispiele von Experimenten , die einen Antikörper Biochip-basierten Biosensor , um die Anwesenheit von Cyanobakterien in Boden- und Wasserproben nachzuweisen. Es ist ein einfaches und zuverlässiges Verfahren auf einem Sandwich-Immunoassay-Format basiert, das Volumen und sehr einfache Probenvorbereitung sehr kleine Probe erfordert. Das Verfahren benötigt eine kurze Zeit, und kann leicht in dem Gebiet durchgeführt werden.
Hier wird ein Multiplex fluoreszierenden Sandwich – Immunoassay die CYANOCHIP, einen 17-Antikörper – Mikroarrays zum Nachweis und zur Identifizierung einer Vielzahl von cyanobakteriellen Gattungen verwendet wird , wird 22 beschrieben. Diese Cyanobakterien stellen die häufigste benthic und planktonischen Gattungen in Süßwasserhabitaten, einige von ihnen Toxin Produzenten. Vor kurzem hat die fluoreszierende Sandwich – Immunoassay – Format verwendet, Mikroorganismen und / oder Bioanalyt…
The authors have nothing to disclose.
Wir danken Dr. Antonio Quesada an der Universidad Autónoma de Madrid für Cyanobakterien Stämme bieten. Diese Arbeit wurde von der Subdirección General de Proyectos de Investigación der spanischen Ministerio de Economía y Competitividad (Mineco) finanziert wurde, gewährt nicht. AYA2011-24803 und ESP2014-58494-R.
0.22 mm pore diameter filters | Millipore | GSWP04700 | For preparation of immunogens |
Eppendorf 5424R microcentrifuge | Fisher Scientific | For preparation of immunogens | |
Phosphate buffer saline (PBS) pH 7.4 (10X) | Thermofisher Scientific | 70011036 | 50 mM potassium phosphate, 150 mM NaCl, pH 7.4 |
Ultrasonic processor UP50H | Hielscher | For preparation of immunogens | |
Complete Freund's adjuvant | Sigma-Aldrich | F5881 | Immunopotentiator |
Incomplete Freud's adjuvant | Sigma-Aldrich | F5506 | For boost injections |
Protein A antibody purification kit | Sigma-Aldrich | PURE1A | For isolation of IgG |
Centrifugal filter devices MWCO<100 KDa | Millipore | UFC510096-96K | For isolation of IgG |
Dialysis tubings, benzoylated | Sigma-Aldrich | D7884-10FT | For isolation of IgG |
Illustra Microspin G-50 columns | GE-HealthCare | GE27-5330-02 | For isolation of IgG |
Bradford reagent | Sigma-Aldrich | B6916-500 mL | To quantify the antibody concentration |
MicroBCA protein assay kit | Thermo Scientific | 23235 | To quantify the antibody concentration |
Protein arraying buffer 2X | Whatman (Sigma Aldrich) | S00537 | Printing buffer; 30-40% glycerol in 1X PBS with 0.01% Tween 20 |
Tween 20 | Sigma-Aldrich | P9416 | Non-ionic detergent |
Bovine serum albumin (BSA) | Sigma-Aldrich | A9418 | Control for printing; blocking reagent |
384-wells microplate | Genetix | X6004 | For antibody printing |
Robot arrayer for multiple slides | MicroGrid II TAS arrayer from Digilab | For antibody printing | |
Epoxy substrate glass slides | Arrayit corporation | VEPO25C | Solid support for antibody printing |
Alexa Fluor-647 Succinimidyl-ester | Molecular probes | A20006 | Fluorochrome |
DMSO | Sigma-Aldrich | D8418 | Fluorochrome dissolvent |
Heidolph Titramax vibrating platform shaker | Fisher Scientific | For antibody labeling | |
Illustra Microspin G-50 columns | Healthcare | 27-5330-01 | For purification of labeled antibodies |
Safe seal brown 0,5 ml tubes | Sarstedt | 72,704,001 | For labeled antibodies storage |
Nanodrop 1000 spectrophotometer | Thermo Scientific | To quantify antibody concentration and labeling efficiency | |
3 µm pore size polycarbonate 47 mm diameter filter | Millipore | TMTP04700 | To concentrate cells |
1M Trizma hydrochloride solution pH 8 | Sigma-Aldrich | T3038 | For TBSTRR preparation; to block slides |
Sodium chloride | Sigma-Aldrich | S7653 | For TBSTRR preparation |
20 µm nylon filters | Millipore | NY2004700 | For environmental extract preparation |
10-12 mm filter holders | Millipore | SX0001300 | For environmental extract preparation |
Protease inhibitor cocktail | Sigma-Aldrich | P8340 | For environmental extract storage |
1M Trizma hydrochloride solution pH 9 | Sigma-Aldrich | T2819 | To block slides |
Heidolph Duomax 1030 rocking platform shaker | VWR | To block slides; for incubation processes | |
VWR Galaxy miniarray microcentrifuge | VWR | C1403-VWR | To dry slides |
Multi-Well microarray hybridization cassette | Arrayit corporation | AHC1X24 | Cassette for 24 assays per slide |
GenePix 4100A microarray scanner | Molecular Devices | Scanner for fluorescence | |
GenePix Pro Software | Molecular Devices | Software for image analysis and quantification |