この記事では、実験条件下で牛の肺における気管支鏡技術、 すなわち気管支鏡ガイド付き接種、気管支肺胞洗浄、気管支ブラッシングし、経気管支肺生検を説明しています。
呼吸器内科の研究における代替動物モデルのための継続的な検索があります。研究の目的に応じて、肺疾患のモデルとして大型動物は、多くの場合、マウスが行うよりもはるかに優れたヒトの肺の状況に似ている。大型動物での作業はまた、動物を犠牲にすることなく、長期的な研究を可能にする時間、一定の経過とともに、繰り返し同じ動物をサンプリングする機会を提供しています。
目的は、呼吸オウム病クラミジア感染の牛のモデルで使用するためのin vivoでのサンプリング方法を確立することであった。サンプリングは、試験中に各動物に種々の時点で行われるべきであり、サンプルは実験条件下での宿主応答、ならびに病原体を研究するのに適しているべきである。
気管支鏡検査は、ヒトおよび獣医学において貴重な診断ツールである。それは、安全かつ低侵襲的処置である。この北極LEは、気管支内の子牛の接種だけでなく、下気道のサンプリングの方法について説明します。 Videoendoscopicは、気管支内接種は、全ての接種された動物において非常に一貫性のある臨床的および病理学的知見につながるとされ、したがって、感染性肺疾患のモデルで使用するために適し。記載されたサンプリングの方法は、気管支肺胞洗浄、気管支ブラッシングと経気管支肺生検である。これらのすべては、ヒト医学において有用な診断ツールである6-8週齢の子牛に、実験目的のために適合させることができる。得られた試料は、宿主における肺の炎症の重症度の病原体検出および特徴付けの両方に適していた。
生物医学研究における大型動物モデルの値は
哺乳類生物内 – 健康や病気の状態に関連する – 現代の学際的な生物医学研究では、動物モデルは、まだ複雑な相互作用を解明することが不可欠である。研究の1%未満が家畜で作業している間、生物医学研究1のモデルとしてウシ、ウマ、ヒツジ、または家禽を研究し、科学者に授与されている17ノーベル賞にもかかわらず、動物実験の頃は大部分は、げっ歯類で行われているまたは家畜。
小動物は多くの実用的な利点( すなわち 、低コスト、遺伝可 鍛性、高スループット、数々の遺伝の可用性、および免疫学のツールおよびキット)を提供し、遺伝子改変されたマウスモデルは、一般に、特定の分子経路を発見する機構研究を行うために受け入れられています。複雑なシステムの生物医学研究、T中彼は生物学的な関連性とマウスモデルの臨床的有用性はますます疑わしいなってきています。彼らは、誤解を招くことと生物学的複雑2-9の単純化のリスクを負う可能性があります。
により種間の特殊性のために、単一の動物種は完全に人間のような状況を反映していないし、複数のモデルを使用すると、学際的な生物医学研究のアプローチで有益であると思われる。トランスレーショナル医学の文脈では、大型動物は、比較モデルは、人間と動物の健康1の両方のデュアルユースの高い生物学的関連性を持つ結果を提供するように機能する機会を提供しています。驚くべきことに、ヒトのゲノムは、より密接に実験用げっ歯類のゲノムによってよりウシゲノムにより似ている。また、他の分類群と比較して、マウスのゲノムがはるか10-12再配置であることが最近確認された。
複雑な研究デザインでは、家畜の使用はuniqはを提供しています動物を犠牲にすることなく、1アンド·同じindividuumから、生体内で種々のサンプルを繰り返しコレクションによる個人内、長期試験のUEの機会。したがって、機能性、炎症性および形態学的変化は、13時間の一定期間にわたって同じ被験体においてモニターすることができる。
適切な呼吸モデルとしてウシ肺
原因の肺の解剖学、呼吸生理学、肺免疫学の有意差の数が多いと、マウスは、ヒトの肺疾患の多くの重要な病態生理学的な側面を再現していません。呼吸器疾患の動物モデルとしてそれらを使用する場合に考慮しなければならない2,9,14-16。解剖学や構造物の特殊性は、それぞれ、哺乳類の肺のために存在しないが、機能的特性( すなわち肺気量、気流、呼吸力学)は、同様の体重に成人とふくらはぎの間のより良い比較可能(50 kg)で。
次のように牛の肺の種特異的な特性がまとめられている:左の肺は2葉(2つのセグメントに分割される葉のcranial、および葉の尾 )で構成され、右肺が4葉で構成されている間( 葉cranial、葉中殿、葉の尾 、そして葉の補助器官 )。他のほとんどの哺乳類の肺の解剖学とは違って、気管の右横側から直接右頭蓋葉枝の気管支。解剖学的構造をsubgrossに関しては、ウシ肺分葉性の高い、比較的低い比肺コンプライアンスと高い肺組織抵抗19に至る間質組織17,18の高い割合を示している。したがって、必要な呼吸活動は、他の種20,21に比べてかなり高い。高度の分葉は、セグメントの強力な独立性をもたらす。このように、INFlammatoryプロセスは、結合組織中隔によって制限され、病気のおよび健康なセグメントは、多くの場合、同じローブ内にある。により担保気道の不足のために、ウシ肺閉塞性肺機能障害13をミラーに特に適している。ウシの肺の中の血管系に関しては、小さな肺動脈は非常に著名な平滑筋層を示しています。そのため、子牛はまた、肺高血圧症や血管リモデリング22〜24の老舗動物モデルとして機能することができる。
呼吸器感染症に関しては、天然に存在する疾患が男性に匹敵する疾患と多くの類似点を共有して家畜に存在する。典型的な例は、ウシ結核25、呼吸器合胞体ウイルスふくらはぎ26-28における(RSV)の感染症、または天然に取得したクラミジア感染症である29。従って、大型動物モデルは密接に自然宿主の状況に似てない。したがって、彼らはほとんどのUSEFです宿主-病原体相互作用と人間30,31の対応する疾患の複雑な病態生理を研究するためのUL。
ウシは、この病原体32〜35のための自然なホストを表すため、呼吸オウム病クラミジア感染症の生物学的に関連モデルとして、子牛が選ばれた。動物とヒトの間に病気や可能な伝送ルートの病因に関連して、このモデルから得られた情報は、牛と人間の両方の影響を私たちの知識を広げるのに役立ちます。モデルはまた、肺での除去のため、一般的に受け入れられ、代替的な治療オプションを確認するのに役立ちます獣医および人間医学の両方において重要で、再び、あるオウム病感染 、。
ウシ呼吸器システムから得られるとし、試験片の適用技術
本稿では説明し、技術や診断方法を示してapplicablウシの肺へのEと哺乳類の肺および治療的介入の有効性に関する病原体の両方の効果を評価するために、我々のモデルで使用される。
気管支鏡検査は、1960年代からヒトの医療で行われており、安全な手順36と見なされます。子牛では、実験的な気管支鏡は、初めて37 1968年に記載された。病原体の気管支内のアプリケーションは、子牛38で下気道疾患を製造するための信頼性のある方法として。ポットヒーテルらによって提案され、現在はウシの研究34,39,40で広まっ方法ですした。 videoendoscopic管理下に病原体の規定された量の気管支内接種は、肺の中の感染性物質を選択的に配置することができます。これは、34全ての動物において一貫した臨床的および病理学的所見をもたらし、病原体による露光に変更されることが予想される肺領域を標的サンプリングを可能にする。
<pクラス= "jove_content"> 気管支肺胞洗浄液 (BALF)は、肺の炎症の有無や重症度によく説明さ指標である。気管支肺胞洗浄(BAL)を呼吸器疾患41の様々な診断のための人間の医学の標準的な手順である。生体牛では、BALは前世紀42の70年代後半ウィルキーとマーカムによって導入されました。これは、牛の下気道を研究するため、安全で再現性のある技術と考えられていた。原因1988プリングルら健康な動物におけるBALFパラメータに関する十分なデータの不足のため、 フレキシブル光ファイバー気管支鏡で健康的な牛にBALを行った。著者らはまた、同等の結果43を取得する実験条件下でBALプロトコルを標準化する必要性を指摘した。 BALは依然としてふくらはぎ44-46におけるインビボサンプリング方法として使用される。気管支ブラッシングは、一般に、人間の医学で使用されている腫瘍性病変または微生物学的分析のために36をサンプリングする診断ツール。研究目的のために、細胞学的ブラッシングによって採取した上皮細胞の初代細胞培養物は、47を得ることができる。ウシにおいて、微生物学的分析のために気管支ブラッシングの使用は、肺43の微生物環境を特徴付けるために記載されている。
経気管支肺生検は、肺組織サンプルを提供し、ヒトでのびまん性肺疾患のための貴重な診断ツールです。医原性気胸と手続きに関連した出血は、この技術に関連した合併症である。それらの発生率は、ヒト患者48に1%未満であると報告されている。経気管支肺生検が必要な機器の高コストおよび生検を得るために必要な時間のために牛に使用するための一般的な方法ではない。その代わりに、経皮的肺生検は、フィールドの条件の下で49-51の方が便利です。
接種の気管支鏡法が開発され、種々の気管支サンプリング方法は、実験条件下で大動物において使用されるように適合させた。記載されている技術はあっても、内視鏡検査ではほとんど経験のある審査官のため、習得が容易である。気管支鏡検査の過程は、低侵襲であり、接種の方法に関連する有害作用だけでなく、説明したサンプリング法(BAL、経気管支肺生検、気管支ブラッシング)は、これまでの動物のいずれにも見られなかった。ヒトでの経気管支肺生検に伴う合併症は、出血していると気胸48、これらはいずれも、この手順を受けた子牛に見られた。経気管支肺生検ではより多くの時間がかかり、経皮的方法より機器を必要としますが、低侵襲で、創感染のリスクを負いません。
inoculatの視覚的に制御し、内視鏡的方法イオンは、肺の特定の部位で病原体の規定された量の堆積を可能にする。したがって、すべての接種した動物において非常に一貫性のある32-34臨床的および病理学的所見をもたらす。しかし、子牛に自然感染のすべての機能に似ていない。呼吸器Cのモデルでは自然に院内感染で子牛は通常、頂端ローブの肺炎を発症するのに対し、 オウム病感染 、接種の記載された技術は、病原体の配置34のサイトに関連した肺病変につながった。この事実は、ウシの天然取得した肺感染症のコンテキストで実験結果の妥当性を解釈する際に考慮に入れなければならない。
Videoendoscopic BALは肺の定義された領域をサンプリングできます。実験目的のために、これは、ブラインド条件下で鼻腔カテーテルの使用に比べて利点である。原因ウシ肺の解剖学的構造に、盲目的に挿入されたカテーテルは、プッシュになるほとんどの場合53,54の右横隔膜葉にEDと審査官はを洗浄され、肺の区域に影響を与えない。横臥位、麻酔子牛における内視鏡BALのもう一つの利点は、80%以上の点眼液の高い平均回収率である。他の研究との比較が立ち、鎮静ふくらはぎ、133.3±1.6ミリリットル46の回復と127.13±3.53ミリリットル45で尾葉に流体240ミリリットルの点滴後に報告されている、ことを明らかにしている。胸骨横臥位での鎮静の子牛に点滴注入した流体の51%が尾葉43から頭蓋ローブと62%を回収することができた。これは点眼液の約半分は、子牛の直立した状態で回収できることを意味している。さらに、試料調製のために必要な、BALFの量に応じて、これは、すべての必要な実験を行うために十分な材料を残していない可能性があります。牛のBALは、多くの研究グループによって使用され、多くされています異なるパラメータは、種々の条件下で試験されてきた。ほとんどの著者は、基礎のローブ43,45,46の洗浄を行ったが、洗浄のために使用される流体の量は、研究グループの間で異なる。これは、困難な異なる刊行物からの結果を比較すること、回収された細胞、タンパク質および他の物質の希釈に矛盾をもたらす。このため、牛に使用するためには点眼後すぐに回収される20ミリリットルの5画分( すなわち、合計100ミリリットル)の体暖かい、等張食塩水で洗浄することを推奨します。大口径( すなわち、> 2mm)を洗浄カテーテルを使用する場合、各画分の体積はわずかにカテーテルに残る流体の量に応じて大きくする必要がある。
ウシの肺の高度にセグメント化された解剖学の方法論の制限につながる。肺の一部から得られた結果は、肺の他の部分には当てはまらないかもしれません。全く存在しないので経気管支生検および洗浄によりプローブされ、全肺領域の視界制御、審査官は、サンプリングされた領域は、健康や病気のであったかどうかを知ることができない。したがって、病原体が病原体のより高い回収率を有するようにし、罹患肺領域をサンプリングするより高い可能性を有するために以前に接種した場所をサンプリングすることが非常に重要である。他の制限は、不良な臨床状態の動物での増加麻酔リスクです。記載された方法は、可能な限り低く動物のための負担を維持する疾患軽度から中等度のモデルで使用されるべきである。第一胃内のガス開発は、これらの種の麻酔リスクを増大させるように反芻動物の全身麻酔は常に、可能な限り短くする必要があります。動物は、気管支鏡が開発されたガスの流出を可能にするためにした直後に発生しやすい位置に配置する必要があり、それらは完全に麻酔から回復するまで、厳重に監視されなければならない。また、記載されている技術は、吹田ではありません未満24時間の間隔をサンプリングするためのBLE。
記載されているプロトコルは、他の感染因子に適合させることができる。種々の病原体の接種の内視鏡は、例えばC.として、記載されているオウム病 32〜34、 パスツレラヘモリチカ 38-40,42、 ヘモフィルスsomni 55、およびウシウイルス性下痢ウイルス44。また、肺の中の病原体の付着物のサイトが必要なモデルに適合させることができる。サンプリング地点を選択する際に、いくつかの重要な事実を考慮しなければならない:(i)のサンプリング部位は、接種の位置に、予想される病理学的所見に基づいて選択されるべきである。剖検の世話を行う場合には(II)ex vivoでのサンプリングのための十分なサンプリングされない肺の領域を残すように注意する必要があります。彼らは機器に到達できるように(III)サンプリングサイトの場所を選択する必要があります。特に経気管支肺生検のために、生検鉗子の長さに起因する制限があります。 (iv)のTサンプリングの彼順序が重要である、気管支ブラッシングと経気管支肺生検は、BALFを汚染であろう、少量の出血につながる可能性があります。したがって、BALFは常に最初に取得する必要があります。他の種におけるプロトコルを使用する場合、種特異的な肺の解剖学的構造を考慮しなければならない。
The authors have nothing to disclose.
The authors are very thankful to the Federal Ministry of Education and Research (BMBF) of Germany for the funding of their work. Also, the authors thank Ines Lemser, Sylke Stahlberg, Ingolf Rücknagel and all the other colleagues working in the team of the animal house (FLI, Germany) for their technical assistance with the bronchoscopies. They are very thankful to Maria-Christina Haase (FLI, Germany) for her help in providing literature. Furthermore, the authors wish to express their gratitude to Dr. Angela Berndt (FLI, Germany) and Nicolette Bestul (University of Wisconsin-River Falls) for critical reading of the manuscript.
Veterinary Video Endoscope | Karl Storz GmbH & Co. KG, Tuttlingen, Germany | PV-SG 22–140 | diameter: 9 mm, working channel: 2,2 mm, working length 140 cm |
lavage catheter | Karl Storz GmbH & Co. KG, Tuttlingen, Germany | diameter: 2 mm; length: 180 cm, Luer-lock-adapter | |
acuator | WEPA Apothekenbedarf GmbH & Co KG, Hillscheid, Germany | 32660 | length: 60 mm |
biopsy forceps | Karl Storz GmbH & Co. KG, Tuttlingen, Germany | REF 60180LT | 1.8 mm, serrated, oval |
Omnifix 20 ml, Luer-Lock | B. Braun Melsungen AG, Melsungen, Germany | 4617207V | |
cytology brush | mtp GmbH, Neuhausen ob Eck, Germany | 110240-10 | working length 180 cm, brush length: 15 mm, diameter 1.8 mm |
iv acess | Henry Schein Vet GmbH, Hamburg, Germany | 370-211 | diameter 1.2 mm, length 43 mm |
Rompun 2% (xylazin) | Bayer Vital GmbH, Leverkusen, Germany | 0.2 mg/kg bodyweight | |
Ketamin 10% (ketamine) | bela-pharm GmbH & Co. KG, Vechta, Germany | 2.0 mg/kg bodyweight | |
isotonic saline solution | B. Braun Melsungen AG, Melsungen, Germany | 3200950 | |
SUB 6 waterbath | CLF analytische Laborgeräte GmbH, Emersacker, Germany | n/a | |
metal tube speculum | n/a | n/a | diameter: 3.5 cm, length: 35 cm |
flashlight | n/a | n/a | |
siliconized glass bottles | n/a | n/a | siliconize with Sigmacote (Sigma-Aldrich Co. LLC) |
Omnifix Luer 3 ml | B. Braun Melsungen AG, Melsungen, Germany | 4616025V | |
Omnifix Luer 5 ml | B. Braun Melsungen AG, Melsungen, Germany | 4616057V | |
sealing plugs | Henry Schein Vet GmbH, Hamburg, Germany | 900-3057 | |
inoculum | n/a | dilute pathogen in 8mL buffer |