Представлен эффективный протокол выделения клеток-сателлитов мышечных конечностей мышечных конечностей мыши, активируемой флуоресценцией (FACS), адаптированный для изучения регуляции транскрипции в мышечных волокнах путем расщепления под мишенями и высвобождения с помощью нуклеазы (CUT&RUN).
Полногеномный анализ малых клеточных популяций является основным препятствием для исследований, особенно в области стволовых клеток. В данной работе описан эффективный протокол выделения клеток-сателлитов из мышцы конечности, ткани с высоким содержанием структурных белков методом флуоресцентно-активированной клеточной сортировки (FACS). Рассеченные мышцы конечностей взрослых мышей механически разрушались путем измельчения в среде, дополненной диспазой и коллагеназой I типа. После разложения гомогенат фильтровали через клеточные ситечки, а клетки суспендировали в буфере FACS. Жизнеспособность определяли с помощью фиксируемого окрашивания жизнеспособности, а иммуноокрашенные сателлитные клетки выделяли методом FACS. Клетки лизировали с помощью Triton X-100 и высвободившиеся ядра связывали с магнитными шариками конканавалина А. Комплексы ядро/шарики инкубировали с антителами против интересующего транскрипционного фактора или модификаций гистонов. После промывок комплексы ядро/шарик инкубировали с нуклеазой белка А-микрококковой нуклеазой, а расщепление хроматина инициировали с помощью CaCl2. После экстракции ДНК были созданы и секвенированы библиотеки, а также получены профили связывания полногеномных транскрипционных факторов и ковалентных модификаций гистонов с помощью биоинформатического анализа. Пики, полученные для различных меток гистонов, показали, что события связывания были специфичны для клеток-сателлитов. Более того, анализ известных мотивов показал, что транскрипционный фактор связан с хроматином через родственный ему элемент ответа. Таким образом, этот протокол адаптирован для изучения регуляции генов в клетках-сателлитах мышц конечностей взрослых мышей.
Поперечнополосатые мышцы скелета составляют в среднем 40% веса всего тела человека1. Мышечные волокна проявляют замечательную способность к регенерации после травмы, которая описывается слиянием новообразованных миоцитов и генерацией новых миоволокон, заменяющихповрежденные. В 1961 году Александр Мауро сообщил о популяции мононуклеарных клеток, которые он назвал сателлитнымиклетками. Эти стволовые клетки экспрессируют парный блок транскрипционного фактора 7 (PAX7) и расположены между базальной пластинкой и сарколеммой мышечных волокон4. Сообщалось, что они экспрессируют кластер дифференцировки 34 (CD34; гемопоэтический, эндотелиальный предшественник и маркер мезенхимальных стволовых клеток), интегрин альфа 7 (ITGA7; маркер гладкой сердечной и скелетной мускулатуры), а также хемокиновый рецептор C-X-C типа 4 (CXCR4; маркер лимфоцитов, гемопоэтических и сателлитных клеток)5. В базальных условиях клетки-сателлиты находятся в особом микроокружении, которое удерживает их в состоянии покоя6. При повреждении мышц они активизируются, размножаются и подвергаются миогенезу7. Тем не менее, поскольку они составляют лишь незначительную часть от общего числа мышечных клеток, их полногеномный анализ является особенно сложным, особенно в физиологических условиях (<1% от общего количества клеток).
Описаны различные методы выделения хроматина из клеток-сателлитов, которые включают иммунопреципитацию хроматина с последующим массивным параллельным секвенированием (ChIP-seq) или расщеплением по мишеням и мечением (CUT&Tag). Тем не менее, эти два метода имеют некоторые существенные ограничения, которые остаются неоспоримыми. Действительно, ChIP-seq требует большого количества исходного материала для получения достаточного количества хроматина, большая часть которого теряется на этапе ультразвуковой обработки. CUT&Tag больше подходит для малого числа клеток, но генерирует больше нецелевых сайтов расщепления, чем ChIP-seq, из-за активности транспозазы Tn5. Кроме того, поскольку этот фермент обладает высоким сродством к открытым областям хроматина, подход CUT&Tag может быть предпочтительно использован для анализа модификаций гистонов или транскрипционных факторов, связанных с активно транскрибируемыми областями генома, а не с заглушенным гетерохроматином 8,9.
Здесь представлен подробный протокол, который позволяет изолировать сателлитные клетки мышц конечностей мышей с помощью FACS для расщепления под мишенями и высвобождения с помощью анализа нуклеаз (CUT&RUN)10,11. Различные этапы включают в себя механическое разрушение тканей, сортировку клеток и изоляцию ядер. Эффективность метода в отношении получения жизнеспособной клеточной суспензии была продемонстрирована путем проведения CUT&RUN анализа ковалентных модификаций гистонов и транскрипционных факторов. Качество изолированных клеток делает описанный метод особенно привлекательным для получения хроматина, который точно фиксирует нативное состояние занятости генома и, вероятно, будет пригоден для захвата конформации хромосом в сочетании с высокопроизводительным секвенированием в определенных локусах (4C-seq) или на уровне всего генома (Hi-C).
В настоящем исследовании представлен стандартизированный, надежный и простой в исполнении метод выделения и культивирования клеток-сателлитов мышей, а также оценки транскрипционной регуляции методом CUT&RUN.
Этот протокол включает в себя несколько важных шагов. Во-первых…
The authors have nothing to disclose.
Благодарим Анастасию Баннварт за оказанную техническую помощь. Мы благодарим животноводческий комплекс IGBMC, клеточную культуру, Клинический институт мышей (ICS, Илькирх, Франция), визуализацию, электронную микроскопию, проточную цитометрию и платформу GenomEast, члена консорциума «France Génomique» (ANR-10-INBS-0009).
Данная работа Междисциплинарного тематического института IMCBio, в рамках программы ITI 2021-2028 Страсбургского университета, CNRS и Inserm, была поддержана IdEx Unistra (ANR-10-IDEX-0002) и проектом SFRI-STRAT’US (ANR 20-SFRI-0012) и EUR IMCBio (ANR-17-EURE-0023) в рамках французской программы «Инвестиции в будущее». Дополнительное финансирование было предоставлено INSERM, CNRS, Unistra, IGBMC, Agence Nationale de la Recherche (ANR-16-CE11-0009, AR2GR), стратегической программой AFM-Téléthon 24376 (для D.D.), INSERM для молодых исследователей (для D.D.), ANR-10-LABX-0030-INRT и французским государственным фондом, управляемым ANR в рамках рамочной программы Investissements d’Avenir (ANR-10-IDEX-0002-02). J.R. был поддержан программой CDFA-07-22 Франко-аллемандского университета и Министерства высшего образования исследований и инноваций, а также Ассоциацией исследований и инноваций (Association pour la Recherche à l’IGBMC) (ARI).
1.5 mL microtube | Eppendorf | 2080422 | |
2 mL microtube | Star Lab | S1620-2700 | |
5 mL tubes | CORNING-FALCON | 352063 | |
50 mL tubes | Falcon | 352098 | |
anti-AR | abcam | ab108341 | |
anti-CD11b | eBioscience | 25-0112-82 | |
anti-CD31 | eBioscience | 12-0311-82 | |
anti-CD34 | eBioscience | 48-0341-82 | |
anti-CD45 | eBioscience | 12-0451-83 | |
anti-CXCR4 | eBioscience | 17-9991-82 | |
anti-DMD | abcam | ab15277 | |
anti-H3K27ac | Active Motif | 39133 | |
anti-H3K4me2 | Active Motif | 39141 | |
anti-ITGA7 | MBL | k0046-4 | |
anti-PAX7 | DSHB | AB_528428 | |
anti-TER119 | BD Pharmingen TM | 553673 | |
Beads | Polysciences | 86057-3 | BioMag®Plus Concanavalin A |
Cell Strainer 100 µm | Corning® | 431752 | |
Cell Strainer 40 µm | Corning® | 431750 | |
Cell Strainer 70 µm | Corning® | 431751 | |
Centrifuge 1 | Eppendorf | 521-0011 | Centrifuge 5415 R |
Centrifuge 2 | Eppendorf | 5805000010 | Centrifuge 5804 R |
Chamber Slide System | ThermoFischer | 171080 | Système Nunc™ Lab-Tek™ Chamber Slide |
Cleaning agent | Sigma | SLBQ7780V | RNaseZAPTM |
Collagenase, type I | Thermo Fisher | 17100017 | 10 mg/mL |
Dispase | STEMCELL technologies | 7913 | 5 U/mL |
DynaMag™-2 Aimant | Invitrogen | 12321D | |
Fixable Viability Stain | BD Biosciences | 565388 | |
Flow cytometer | BD FACSAria™ Fusion Flow Cytometer | 23-14816-01 | |
Fluoromount G with DAPI | Invitrogen | 00-4959-52 | |
Genome browser | IGV | http://software.broadinstitute.org/software/igv/ | |
Glycerol | Sigma-Aldrich | G9012 | |
Hydrogel | Corning® | 354277 | Matrigel hESC qualified matrix |
Image processing software | Image J® | V 1.8.0 | |
Laboratory film | Sigma-Aldrich | P7793-1EA | PARAFILM® M |
Liberase LT | Roche | 5401020001 | |
Propyl gallate | Sigma-Aldrich | 2370 | |
Sequencer | Illumina Hiseq 4000 | SY-401-4001 | |
Shaking water bath | Bioblock Scientific polytest 20 | 18724 |