Summary

清醒小鼠海马毛细血管的体内纤维耦合临床前共聚焦激光扫描内窥镜 (pCLE)

Published: April 21, 2023
doi:

Summary

虽然多光子成像仅在距组织表面的有限深度有效,但可以通过pCLE在任何深度实现3μm分辨率成像。在这里,我们提出了一种进行pCLE成像的方案,以测量发作期和野生型小鼠海马体中的微血管动力学。

Abstract

该协议的目的是描述光纤束耦合的临床前共聚焦激光扫描内窥镜(pCLE)的具体应用,以阐明癫痫发作期间由壁细胞驱动的毛细血管血流效应。体外和体内皮质成像表明,由周细胞驱动的毛细血管收缩可由健康动物的功能性局部神经活动以及药物应用引起。在这里,提出了如何使用pCLE确定微血管动力学在任何组织深度(特别是在海马体中)癫痫神经变性中的作用的方案。我们描述了一种头枕技术,该技术已被用于记录清醒动物的pCLE,以解决麻醉剂对神经活动的潜在副作用。使用这些方法,可以在大脑的深层神经结构中进行数小时的电生理和成像记录。

Introduction

与其他显微成像方法1,2,3,4,5,6,7,8相比基于光纤的活体共聚焦显微镜允许以高速(高达240 Hz,取决于视场大小9)测量任何大脑区域、任何深度、任何深度的血流动力学).光纤探针能够以 3 μm 的分辨率进行体内共聚焦激光扫描成像,因为探针的尖端(由一束 5000-6000 根直径为 3 μm 的单根光纤组成的无透镜物镜)可以以微电极的精度定位在目标荧光靶标的 15 μm 范围内。与体内双光子成像一样,必须事先将荧光团引入成像靶标。例如,可以将荧光素葡聚糖(或量子点)注射到脉管系统中,或者可以将遗传编码的荧光蛋白转染到细胞中,或者在成像之前将荧光染料(如俄勒冈绿BAPTA-1)批量加载到细胞中。

最近使用这些技术的研究发现,导致发作性毛细血管痉挛的壁细胞运动活动(癫痫发作期间壁细胞位置突然收缩9)可导致发作性海马神经退行性变9虽然先前的影像学研究显示体外和体内周细胞收缩与药物应用有关 6,7,10,11,12但 Leal-Campanario 等人发现了小鼠大脑中体内自发毛细血管收缩的第一个证据。为了确定与人类颞叶癫痫的相关性,他们研究了雄性(P30-40 岁)敲除 (KO) Kv1.1 (kcna1-null) 小鼠 14,15 (JAX stock #003532),这是人类发作性共济失调 1 型的遗传模型15.周细胞在自发性癫痫动物及其野生型 (WT) 同窝动物中驱动病理性和生理性海马壁画血管收缩9。这些观察结果在用红藻氨酸使癫痫的WT动物中复制,从而表明它们适用于其他形式的癫痫。此外,Leal-Campanario等人使用新颖的立体显微镜方法确定,癫痫动物的凋亡神经元(但不是健康的神经元)在空间上与海马微血管系统耦合。由于兴奋性毒性与脉管系统没有已知的空间关联,因此该结果表明异常毛细血管痉挛性缺血引起的缺氧会导致癫痫的神经退行性变。图 1 显示了总体设置的原理

Protocol

该协议遵循美国国立卫生研究院实验动物护理和使用指南。所有程序均由巴罗神经学研究所的机构动物护理和使用委员会批准。 1. 立体定位用于开颅手术 称重,然后用氯胺酮 – 甲苯噻嗪(100mg / kg – 10mg / kg腹腔注射)混合物麻醉小鼠。通过观察动物对尾巴和/或脚趾捏合没有反应,确保动物完全麻醉。 在初始麻醉植入手术期间,将加热垫放在鼠标下方,并使用?…

Representative Results

我们开发了这些方法来评估海马体中异常的周细胞驱动的毛细血管痉挛(由于癫痫发作而发生)是否会导致明显的缺氧,从而导致发作灶的细胞死亡9,13。 头帽的开发及其正确安装为记录提供了高稳定性,允许在发作期和发作间期同时记录野生型和癫痫清醒小鼠海马深处的脑电图和血流。捕获与癫痫发作相关的血流事件需要长时间?…

Discussion

我们开发了一种头帽约束系统,用于在清醒小鼠中同时进行电生理和光纤 pCLE 实验,从而减少麻醉药物引起的潜在反应污染。头盖和安装装置结构简单,可重复用于慢性清醒成像实验。我们根据体内显微血流成像的金标准TPLSM检查了记录的质量。

熟练的手术技能是实施我们在这里描述的方案的必要条件。手术必须在无菌条件下进行,并始终在手术显微镜下进行,同时在海马体…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目由美国癫痫学会的研究倡议奖、亚利桑那州生物医学研究委员会授予SLM的奖项以及预防失明研究公司向纽约州立大学下州健康科学大学眼科系提供的挑战资助,纽约州帝国创新计划, 以及美国国家科学基金会(0726113、0852636和1523614)、巴罗神经学基金会、玛丽安·罗谢尔夫人、格蕾丝·韦尔顿夫人和尊严健康 SEED 奖的进一步资助,以及美国国家科学基金会(0726113、0852636 和 1523614)和美国国立卫生研究院(R01EY031971 AND R01CA258021 奖项)对 SLM 和 SMC 的进一步资助。 这项工作也得到了负责卫生事务的助理国防部长办公室的支持,奖励编号为。W81XWH-15-1-0138,至 S.L.M. L.-C.得到了西班牙教育部José Castillejo奖学金的支持。我们感谢 O. Caballero 和 M. Ledo 提供的技术咨询和援助 

Materials

0.7 mm diameter burr Fine Science Tools 19007-07 For Screws No. 19010-00
0.9 mm diameter burr Fine Science Tools 19007-09
ASEPTICO AEU-12C TORQUE PLUS from Handpiece solution AEU12C
Bull dog serrifine clump Fine Science Tools 18050-28
CellVizio dual band Mauna Kea Technologies
CellVizio single band Mauna Kea Technologies
Confocal Microprobe 300 microns (Serie S) Mauna Kea Technologies
Custom-made alignment piece L-shaped (angled at 90 deg) and made of stainless steel with two holes drilled on it, with a 4 mm separation from center to center
Custom-made mounting bar The long section piece of the mounting bar should be between 9.4 – 13mm. Fixed to this piece of the mounting bar, position a stainless-steel plate 1.5 cm long and 0.5 cm wide that has two holes drilled separated 4 mm from center to center, the same distance that the L-shaped alignment piece.
Cyanoacrylate adhesive-Super Glue
Dumont forceps #5 Fine Science Tools 11252-20
DuraLay Inlay Resin – Standard Package Reliance Dental Mfg Co. 602-7395 (from patterson dental)
Fillister Head, Slotted Drive, M1.6×0.35 Metric Coarse, 12mm Length Under Head, Machine Screw MSC industrial direct co. 2834117
Fine Point scissor Fine Science Tools 14090-09
Fluorescein 5% w/w lysine-fixable dextran (2MD) Invitrogen, USA D7137
Halsey smooth needle holder Fine Science Tools 12001-13
Kalt suture needle 3/8 curved Fine Science Tools 12050-03
lab standard stereotaxic, rat and mouse Stoelting Co. 51704 51670
Methocel 2% Omnivision GmbH PZN: 04682367 Eye ointment to prevent dryness.
Mouse Temperature controller, probe (YSI-451), small heating pad-TC-1000 Mouse CWE Inc. 08-13000
PhysioTel F20-EET transmitters DSI 270-0124-001
Robot Stereotaxic, Manipulator Arm, ADD-ON, 3 Axis, LEFT Stoelting Co.C13 51704
Sel-Tapping bone screws Fine Science Tools 19010-10
Standard Ear Bars and Rubber Tips for Mouse Stereotaxic Stoelting Co 51648
Suture Thread – Braided Silk/Size 4/0 Fine Science Tools 18020-40
Tissue separating microspatula Fine Science Tools 10091-121

References

  1. Denk, W., et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. Journal of Neuroscience Methods. 54 (2), 151-162 (1994).
  2. Kleinfeld, D., Mitra, P. P., Helmchen, F., Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America. 95, 15741-15746 (1998).
  3. Helmchen, F., Fee, M. S., Tank, D. W., Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron. 31, 903 (2001).
  4. Chaigneau, E., Oheim, M., Audinat, E., Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proceedings of the National Academy of Sciences of the United States of America. 100, 13081-13086 (2003).
  5. Larson, D. R., et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 300, 1434-1436 (2003).
  6. Hirase, H., Creso, J., Singleton, M., Bartho, P., Buzsaki, G. Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia. 46, 95-100 (2004).
  7. Hirase, H., Creso, J., Buzsaki, G. Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience. 128, 209-216 (2004).
  8. Schaffer, C. B., et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biology. 4, 22 (2006).
  9. Leal-Campanario, R., et al. Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy. Scientific Reports. 7, 43276 (2017).
  10. Peppiatt, C. M., Howarth, C., Mobbs, P., Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 443, 700-704 (2006).
  11. Yemisci, M., et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Medicine. 15, 1031-1037 (2009).
  12. Fernandez-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J., Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America. 107, 22290-22295 (2010).
  13. Leal-Campanario, R., Alarcon-Martinez, L., Martinez-Conde, S., Calhoun, M., Macknik, S., Mouton, P. R. Blood Flow Analysis in Epilepsy Using a Novel Stereological Approach. Neurostereology: Unbiased Stereology of Neural Systems. , (2013).
  14. Smart, S. L., et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron. 20, 809-819 (1998).
  15. Zuberi, S. M., et al. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain. 122, 817-825 (1999).
check_url/57220?article_type=t

Play Video

Cite This Article
Leal-Campanario, R., Martinez-Conde, S., Macknik, S. L. In Vivo Fiber-Coupled Pre-Clinical Confocal Laser-scanning Endomicroscopy (pCLE) of Hippocampal Capillaries in Awake Mice. J. Vis. Exp. (194), e57220, doi:10.3791/57220 (2023).

View Video