Этот протокол описывает получение терапевтического антитела в системе экспрессии млекопитающих. Описанные методы включают приготовление векторной ДНК, стабильной трансфекции и адаптации эмбриона человека линии клеток почки 293 без сыворотки, набор из крупных культур и очистки с использованием аффинной хроматографии.
Ensuring the successful production of a therapeutic antibody begins early on in the development process. The first stage is vector expression of the antibody genes followed by stable transfection into a suitable cell line. The stable clones are subjected to screening in order to select those clones with desired production and growth characteristics. This is a critical albeit time-consuming step in the process. This protocol considers vector selection and sourcing of antibody sequences for the expression of a therapeutic antibody. The methods describe preparation of vector DNA for stable transfection of a suspension variant of human embryonic kidney 293 (HEK-293) cell line, using polyethylenimine (PEI). The cells are transfected as adherent cells in serum-containing media to maximize transfection efficiency, and afterwards adapted to serum-free conditions. Large scale production, setup as batch overgrow cultures is used to yield antibody protein that is purified by affinity chromatography using an automated fast protein liquid chromatography (FPLC) instrument. The antibody yields produced by this method can provide sufficient protein to begin initial characterization of the antibody. This may include in vitro assay development or physicochemical characterization to aid in the time-consuming task of clonal screening for lead candidates. This method can be transferable to the development of an expression system for the production of biosimilar antibodies.
Успех терапевтических антител продолжает стимулировать значительные инвестиции в развитие антител, как начинается волна терапии следующего поколения. Рынок антител , как ожидается, будет переработанная фрагментами антител 1, антитело-лекарственное средство конъюгатов 2, биспецифические антитела 3 и сконструированных антител с благоприятными свойствами 4. Другой класс приобретает фармацевтический интерес являются биоподобий. Биоподобие антитела являются "очень похожи" реплицировать продукты терапевтического антитела, которое уже получил одобрение регулирующих органов. Предлагаемая биоподобие должна быть сравнима с отправителе антитела по отношению к его структуре, функции животных токсичности, клиническая эффективность и безопасность, человека фармакокинетики (PK), фармакодинамики (PD) и иммуногенности 5, 6.
Утверждение гАтеш из биоподобных антител медленно из-за строгих ограничений на качество конечного продукта. Точные производственные процессы, такие как специфические клеточные линии и условия культивирования до финальных стадий обработки может оставаться частной собственностью. Более того, производство антител, по своей сути предполагает определенную степень изменчивости, которая может добавить к проблеме получения весьма аналогичный продукт. Комплексный физико – химическая и биофизических характеристика и сравнение довольно сложно, но ряд исследований , демонстрирующих характеристики биоподобных антител появляются в литературе 7, 8, 9.
Генерирование терапевтическое антитело начинается с трансфекции клеток-хозяев млекопитающих вектором, несущим гены, для соответствующего антитела. Вектор дизайн, линия клеток и условия культивирования являются ключевыми факторами для создания эксприжимное система.
ДНК-последовательности антител могут быть получены из банка медикаментов (www.drugbank.ca), IMGT (www.igmt.org) или научных публикаций, включая патенты. Например, последовательность трастузумаба доступна через банк лекарственных средств (DB ID: DB00072). Аминокислотная последовательность вариабельных областей могут пройти проектирование и оптимизацию генов для синтеза в желаемых видов хозяев. Это важно для биоподобие антитела, никакие модификации не сделано в аминокислотной последовательности. После того, как синтезирован, гены антител могут быть субклонировали в соответствующий вектор выбора.
Человеческие антитела IgG состоит из двух идентичных тяжелых цепей и двух идентичных легких цепей. Плотно регулируемую экспрессию обеих цепей имеет важное значение для оптимального производства гетерологичного белка IgG в клетках млекопитающих 10. Внутри- а также дисульфидные связи между цепями должны быть сформированы и ряд посттрансляционных модификаций должны быть вtroduced в процессе биосинтеза белка. Ряд векторов доступны, которые были разработаны специально, чтобы выразить гены антител (см табл материалов). Эти векторы антитела специфичные обычно выражают постоянные области как для тяжелых и легких цепей, так только Вариабельные области каждой цепи требуют клонирования.
Трансфекция клеток с двумя независимыми конструкциями (Котрансфекция) является наиболее распространенным подходом для доставки тяжелых и легких цепей генов, кодирующих. То есть, каждый ген приводится в движение своего собственного промотора и транскрибируется в виде отдельных цепей антитела перед сборкой в эндоплазматический ретикулум. С другой стороны, мульти-cistronic векторы имеют внутренние рибосомы сайте вступления (IRES) элементы , включенные , которые делают возможной экспрессию множественных генов как одного транскрипта мРНК с переводом разрешенной из внутренних областей мРНК 11. В этом случае, тяжелые и легкие цепи гены, кодирующие соединены в Arrangement достичь коэкспрессии обоих цепей антитела 10, 12.
В то время как трансфицированы клетки дают достаточное количество белка, чтобы выполнить ограниченное число экспериментов, стабильно трансфецированные клеточные линии, которые претерпели выбор для интеграции генома может обеспечить более высокие урожаи. Более высокие количества белка позволяют для развития анализа , относящейся к характеристике в пробирке и может обеспечивать индикацию качества антител в рассмотрении для последующих применений , таких как клональной клеточной линии и свинцового отбора кандидатов.
Цель данной статьи состоит в том, чтобы описать стабильную экспрессию и очистку терапевтического антитела, продуцируемого в системе экспрессии млекопитающих. В самом деле, этот метод может быть применен к экспрессии биоподобие антитела. Метод может быть использован для начальной характеризации антител, прежде чем перейти к критическим, хотя и трудоемкого STEпс идентификации желаемого клона для увеличения производства масштаба. Более того, этот метод может быть использован, чтобы выразить другие белки, а не только антитела.
Следующее подробное протокол описывает экспрессию терапевтического антитело трастузумаб. Она состоит из подготовки векторной ДНК с последующей стабильной трансфекции в клеточной линии и очистки белка антитела НЕК-293 с помощью автоматизированного метода хроматографического.
Этот протокол подробно трансфекцией стабильной экспрессии и очистки терапевтического антитела в клетках НЕК-293. Стабильная экспрессия генов антител является первым шагом в генерации антител, производящих клеточную линию для разработки и производства терапевтического антитела. В то …
The authors have nothing to disclose.
The research was supported by the University of Sydney. pVITRO1-Trastuzumab-IgG1/κ was a gift from Andrew Beavil (Addgene plasmid # 61883). We thank Tihomir S. Dodev for useful discussions regarding pVITRO1-Trastuzumab-IgG1/κ.
pFUSE vector series | N/A | InvivoGen | Heavy and light antibody genes expressed in separate vectors that require co-transfection. |
mAbXpress vector series | N/A | ACYTE Biotech Pty Ltd. | Heavy and light antibody genes expressed in separate vectors that require co-transfection. Refer to: Jones, M. L. et al. A method for rapid, ligation-independent reformatting of recombinant monoclonal antibodies. J Immunol Methods. 354 (1-2), 85-90, doi:10.1016/j.jim.2010.02.001, (2010). |
pVITRO1 vector | N/A | N/A | Heavy and light antibody genes are each driven by a separate promoter in a single vector. Refer to: Dodev, T. S. et al. A tool kit for rapid cloning and expression of recombinant antibodies. Sci Rep. 4 5885, doi:10.1038/srep05885, (2014). |
GS vector series | N/A | Lonza | Multi-cistronic vector with heavy and light antibody genes co-expressed and translated as single transcript. |
Multi-cistronic vector series 1 | N/A | N/A | Multi-cistronic vector with heavy and light antibody genes co-expressed and translated as single transcript. Refer to: Li, J. et al. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods. 318 (1-2), 113-124, doi:10.1016/j.jim.2006.10.010, (2007). |
Multi-cistronic vector series 2 | N/A | N/A | Multi-cistronic vector with heavy and light antibody genes co-expressed and translated as single transcript. Refer to: Ho, S. C. et al. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol. 157 (1), 130-139, doi:10.1016/j.jbiotec.2011.09.023, (2012). |
pVITRO1-Trastuzumab-IgG1/κ | 61883 | Addgene | Mammalian expression vector containing trastuzumab antibody genes with hygromycin resistance gene; pVITRO1-Trastuzumab-IgG1/κ was a gift from Andrew Beavil. |
Fast-Media Hygro Agar | fas-hg-s | Jomar Life Research | Used to prepare low salt LB agar containing 75 µg/ml hygromycin. |
Fast-Media Hygro TB | fas-hg-l | Jomar Life Research | Used to prepare low salt TB broth containing 75 µg/ml hygromycin. |
Glycerol, BioXtra, ≥99% | G6279 | Sigma-Aldrich | Prepare to 80% with water and autoclave. Store at room temperature. |
Jestar 2.0/LFU Plasmid Maxi Kit | G221020 | Astral Scientific | Plasmid Maxi Prep Kit; elute or resuspend DNA in water (pH 7.0-8.5). |
FreeStyle 293-F Cells | R790-07 | Life Technologies | HEK-293 cell line adapted to suspension culture in serum-free media. |
FreeStyle 293 Expression Medium | 12338-018 | Life Technologies | Serum-free media specially formulated for maintaing 293-F cell line and high protein expression. |
Kolliphor P188 | K4894 | Sigma-Aldrich | Non-ionic surfactant; pluronic F-68; prepare to 10% in water and filter-sterilize using 0.22 μm filter. Store at 4oC. |
DMEM, high glucose | 11995-065 | Life Technologies | |
Heat-Inactivated Foetal Bovine Serum | 10082-147 | Life Technologies | |
Polyethylenimine, Linear, MW 25,000 | 23966 | Polysciences, Inc. | Prepare to 1 mg/ml in water. Adjust to pH 7.0 with 1 M HCl (solution becomes clear) and filter-sterilize using 0.22 μm filter. Store at -80oC until use. |
OptiPro SFM | 12309-050 | Life Technologies | Transfection formulated serum-free media |
Hygromycin B Solution | ant-hg-1 | Jomar Life Research | |
Dimethylsulphoxide (DMSO) | AJA2225 | Thermo Fisher Scientific | |
Tryptone (casein peptone) | LP0042B | Thermo Fisher Scientific | Prepare to 20% in PBS and filter-sterilize using 0.22 μm filter. Store at 4oC. |
Phosphate Buffered Saline (PBS) Tablets, pH 7.4, 100 ml | 09-2051-100 | Astral Scientific | |
HiTrap Protein A High Performance, 1 x 5 ml column | GE17-0403-01 | Sigma-Aldrich | |
AKTApurifier 100 | 28406266 | GE Healthcare | Automated FPLC system, which can include a P-960 sample pump and Frac-920 fraction collector. |
Glycine-HCl | G2879 | Sigma-Aldrich | |
Citric Acid, monohydrate | BIOC2123 | Astral Scientific | |
Sodium Citrate, trisodium salt dihydrate | BIOCB0035 | Astral Scientific | |
1 M Tris-HCl solution pH 9.0 | BIOSD8146 | Astral Scientific | |
Amicon Ultra Centrifugal Filters (30 MWCO) | UFC803008/UFC903008 | Merck Millipore | Used to buffer exchange and concentrate purified protein. |
Pierce Bicinchoninic Acid (BCA) Assay Kit | 23227 | Thermo Fisher Scientific | |
BLItz System | 45-5000 | fortéBIO | Instrument used for bio-layer interferometry (BLI) measurements. |
Protein A biosensors | 18-5010 | fortéBIO | |
Acrylamide/Bisacrylamide (37.5:1), 40% solution | 786-502 | Astral Scientific | |
Ammonium Persulfate (APS) | AM0486 | Astral Scientific | |
TEMED | AM0761 | Astral Scientific | |
Coomassie Brilliant Blue R-250 | 786-498 | Astral Scientific | |
Precision Plus Dual-Color Protein Standard | 1610374 | Bio-Rad |