We describe here a method to identify multiple phosphorylations of an intrinsically disordered protein by Nuclear Magnetic Resonance Spectroscopy (NMR), using Tau protein as a case study. Recombinant Tau is isotopically enriched and modified in vitro by a kinase prior to data acquisition and analysis.
Aggregates of the neuronal Tau protein are found inside neurons of Alzheimer’s disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation of Tau. In the course of the molecular investigation of Tau functions and dysfunctions in the disease, nuclear magnetic resonance (NMR) spectroscopy is used to identify the multiple phosphorylations of Tau. We present here detailed protocols of recombinant production of Tau in bacteria, with isotopic enrichment for NMR studies. Purification steps that take advantage of Tau’s heat stability and high isoelectric point are described. The protocol for in vitro phosphorylation of Tau by recombinant activated ERK2 allows for generating multiple phosphorylations. The protein sample is ready for data acquisition at the issue of these steps. The parameter setup to start recording on the spectrometer is considered next. Finally, the strategy to identify phosphorylation sites of modified Tau, based on NMR data, is explained. The benefit of this methodology compared to other techniques used to identify phosphorylation sites, such as immuno-detection or mass spectrometry (MS), is discussed.
L' un des principaux défis de la santé au 21 e siècle , sont des maladies neurodégénératives telles que la maladie d' Alzheimer (MA). Tau est une protéine associée aux microtubules qui stimule microtubules (MT) la formation. Tau est également impliqué dans plusieurs maladies neurodégénératives, soi-disant tauopathies, dont le plus connu est AD. Dans ces troubles, Tau auto-agrégats en filaments hélicoïdaux appariés (PHF) et se trouve modifié sur de nombreux résidus de modifications post – traductionnelles (PTM) , tels que la phosphorylation 1. La phosphorylation de la protéine Tau est impliquée à la fois dans la régulation de sa fonction physiologique de la stabilisation MT et la perte pathologique de la fonction qui caractérise les neurones AD.
En outre, la protéine Tau, lorsqu'ils sont intégrés dans les PHF dans des neurones malades, est invariablement hyperphosphorylée 2. Contrairement à Tau normale qui contient 2-3 groupes phosphate, le Tau hyperphosphorylée en PHF contient 5 à 9 phosphatgroupes E 3. Hyperphosphorylation de Tau correspond à la fois à une augmentation de la stoechiométrie à certains sites et de la phosphorylation des sites supplémentaires qui sont appelés des sites pathologiques de phosphorylation. Cependant, le chevauchement existe entre AD et modèles adultes normaux de phosphorylation, en dépit des différences quantitatives dans le niveau 4. Quelle est la spécificité des événements de phosphorylation fonction d'influence et le dysfonctionnement de Tau reste largement inconnu. Notre objectif est de décrypter la réglementation Tau par PTM au niveau moléculaire.
Pour approfondir la compréhension des aspects moléculaires de Tau, nous devons relever les défis techniques. Tout d'abord, Tau est une protéine intrinsèquement désordonnés (IDP) lorsque isolé en solution. De telles protéines manquent structure tridimensionnelle bien définie dans des conditions physiologiques et nécessitent des méthodes particulières biophysiques pour étudier leur fonction (s) et les propriétés structurelles. Tau est un paradigme pour la classe croissante des personnes déplacées, souvent trouvé associé àpathologies telles que les maladies neurodégénératives, ce qui augmente l'intérêt de comprendre les paramètres moléculaires qui sous-tendent leurs fonctions. En second lieu, la caractérisation de la phosphorylation de tau est un défi analytique, avec des 80 sites potentiels de phosphorylation le long de la séquence la plus longue isoforme Tau 441 acides aminés. Un certain nombre d'anticorps ont été développés contre des épitopes de la protéine tau phosphorylée et sont utilisés pour la détection de tau dans les neurones pathologique ou le tissu cérébral. les événements de phosphorylation peuvent avoir lieu sur au moins 20 sites ciblés par les kinases de proline dirigée, la plupart d'entre eux dans la proximité de la région riche en proline. Le qualitative (quels sites?) Et quantitative (ce stoechiométrie?) La caractérisation est difficile , même par les plus récentes techniques MS 5.
spectroscopie RMN peut être utilisée pour étudier des protéines qui sont hautement désordonnés des systèmes dynamiques constitués d'ensembles de conformères. spectroscopie RMN à haute résolution a été applied pour étudier la structure et la fonction de la protéine Tau. En outre, la complexité du profil de phosphorylation de Tau a conduit au développement d'outils moléculaires et de nouvelles méthodes d' analyse par RMN pour l'identification des sites de phosphorylation 6 – 8. RMN comme méthode d'analyse permet d'identifier des sites de phosphorylation de tau de manière globale, la visualisation de toutes les modifications à site unique en une seule expérience, et la quantification de l'étendue de l'incorporation de phosphate. Ce point est essentiel, car bien que les études de phosphorylation sur Tau abondent dans la littérature, la plupart d'entre eux ont été réalisées avec des anticorps, laissant un grand degré d'incertitude sur le profil complet de phosphorylation et donc l'impact réel des événements de phosphorylation individuels. y compris les kinases PKA recombinants, glycogène synthase kinase 3β (GSK3), la kinase dépendante de la cycline 2 / cycline A (CDK2 / CycA), la kinase dépendant de la cycline 5 (CDK5) / p25 acteprotéine ivator, extracellulaire régulée par un signal kinase 2 (ERK2) et microtubules affinité régulation kinase (MARK), qui présentent une activité de phosphorylation vers Tau, peuvent être préparés sous une forme active. En outre, les mutants Tau qui permettent de générer des isoformes de protéines Tau spécifiques avec des motifs de phosphorylation bien caractérisés sont utilisés pour déchiffrer le code de phosphorylation de Tau. Spectroscopie RMN est ensuite utilisée pour caractériser des échantillons Tau enzymatiquement modifiés 6 – 8. Bien que la phosphorylation in vitro de Tau est plus difficile que pseudo-phosphorylation , par exemple par mutation de Ser / Thr choisi en acide glutamique (Glu) des résidus, cette approche a ses mérites. En effet, ni les chocs, ni interaction paramètres structurels de phosphorylation peuvent toujours être imitées par les acides glutamique. Un exemple est le motif de tour observé autour phosphosérine 202 (pSer202) / 205 phosphothréonine (pThr205), qui ne sont pas reproduits avec des mutations Glu 9.
<p class = "jove_content"> Ici, la préparation du marquage isotopique des investigations RMN Tau sera décrit d'abord. La protéine tau phosphorylée par ERK2 est modifié sur de nombreux sites décrits comme des sites pathologiques de phosphorylation, et représente donc un modèle intéressant de Tau hyperphosphorylée. Un protocole détaillé de Tau dans la phosphorylation in vitro par ERK2 kinase recombinante est présentée. L' ERK2 est activé par la phosphorylation par la protéine kinase activée par mitogene / ERK kinase (MEK) 10-12. En plus de la préparation de la modification, de la protéine Tau marqué isotopiquement, la stratégie utilisée pour l'identification RMN du PTM est décrite.Nous avons utilisé la spectroscopie RMN pour caractériser des échantillons Tau enzymatiquement modifiés. L'expression recombinante et purification décrit ici pour la pleine longueur de la protéine Tau humaine peuvent de même être utilisés pour produire des mutants Tau Tau ou domaines. Isotopiquement enrichi de protéines est nécessaire pour la spectroscopie RMN, ce qui nécessite l'expression recombinante. Identification des sites de phosphorylation nécessite l' affectation de résonance et une pr…
The authors have nothing to disclose.
The NMR facilities were funded by the Région Nord, CNRS, Pasteur Institute of Lille, European Community (FEDER), French Research Ministry and the University of Sciences and Technologies of Lille. We acknowledge support from the TGE RMN THC (FR-3050, France), FRABio (FR 3688, France) and Lille NMR and RPE Health and Biology core facility. Our research is supported by grants from the LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer’s disease), EU ITN TASPPI and ANR BinAlz.
pET15B recombinant T7 expression plasmid | Novagen | 69257 | Keep at -20°C |
BL21(DE3) transformation competent E.coli bacteria | New England Biolabs | C2527I | Keep at -80°C |
Autoclaved LB Broth, Lennox | DIFCO | 240210 | Bacterial Growth Medium |
MEM vitamin complements 100X | Sigma | 58970C | Bacterial Growth Medium Supplement |
15N, 13C-ISOGRO complete medium powder | Sigma | 608297 | Bacterial Growth Medium Supplement |
15NH4Cl | Sigma | 299251 | Isotope |
13C6-Glucose | Sigma | 389374 | Isotope |
Protease inhibitor tablets | Roche | 5056489001 | Keep at 4°C |
1 tablet in 1ml is 40X solution that can be kept at -20°C | |||
DNaseI | EUROMEDEX | 1307 | Keep at -20°C |
Homogenizer (EmulsiFlex-C3) | AVESTIN | Lysis is realized at 4°C | |
Pierce™ Unstained Protein MW Marker | Pierce | 266109 | |
Active human MEK1 kinase, GST Tagged | Sigma | M8822 | Keep at -80°C |
AKTÄ Pure chromatography system | GE Healthcare | FPLC | |
HiTrap SP Sepharose FF (5 mL column) | GE Healthcare | 17-5156-01 | Cation exchange chromatography columns |
HiPrep 26/10 Desalting | GE Healthcare | 17-5087-01 | Protein Desalting column |
PD MidiTrap G-25 | GE Healthcare | 28-9180-08 | Protein Desalting column |
Tris D11, 97% D | Cortecnet | CD4035P5 | Deuterated NMR buffer |
5 mm Symmetrical Microtube SHIGEMI D2O ( set of 5 inner & outerpipe) | Euriso-top | BMS-005B | NMR Shigemi Tubes |
eVol kit-electronic syringe starter kit | Cortecnet | 2910000 | Pipetting |
Bruker 900MHz AvanceIII with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
Bruker 600MHz DMX600 with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
TopSpin 3.1 | Bruker | Acquisition and Processing software for NMR experiments | |
Sparky 3.114 | UCSF (T. D. Goddard and D. G. Kneller) | NMR data Analysis software |