Summary

Não-invasivos de imagem de candidíase disseminada em larvas do peixe

Published: July 30, 2012
doi:

Summary

O desenvolvimento rápido, tamanho pequeno e transparência de peixes-zebra são enormes vantagens para o estudo do controle imunológico inato de infecção<sup> 1-4</sup>. Aqui demonstramos técnicas para infectar larvas do peixe utilizando o agente patogénico fúngica<em> Candida albicans</em> Por microinjeção, a metodologia usada recentemente para implicar atividade oxidase NADPH de fagócitos no controle de dimorfismo fúngico<sup> 5</sup>.

Abstract

Candidíase disseminada causada pelo patógeno Cândida albicans é um problema clínico importante em indivíduos hospitalizados e está associada com uma mortalidade de 30 a 40% atribuível 6. A candidíase sistêmica é normalmente controlada pela imunidade inata, e indivíduos com defeitos genéticos em células imunes inatas componentes, tais como NADPH oxidase de fagócitos são mais suscetíveis à candidemia 7-9. Muito pouco é conhecido sobre a dinâmica de C. albicans interacção com as células imunes inatas in vivo. extensa em estudos in vitro demonstraram que fora do hospedeiro C. albicans germina dentro de macrófagos, e é rapidamente destruída por neutrófilos 10-14. Os estudos in vitro, embora úteis, não pode recapitular o complexo in vivo ambiente, que inclui dependentes do tempo dinâmica dos níveis de citocinas, anexos da matriz extracelular, e os contactos intercelulares 10, 15-18 </sup>. Para investigar a contribuição desses fatores no sistema patógeno-hospedeiro interação, é fundamental para encontrar um organismo modelo para visualizar estes aspectos da infecção não-invasiva em um hospedeiro vivo intacto.

A larva do peixe-zebra oferece um hospedeiro vertebrado único e versátil para o estudo da infecção. Durante os primeiros 30 dias de desenvolvimento larvas do peixe têm apenas inatas defesas imunitárias 2, 19-21, simplificando o estudo de doenças como a candidíase disseminada que são altamente dependentes da imunidade inata. O tamanho pequeno e transparência das larvas do peixe permitir imagem de dinâmica da infecção a nível celular, tanto para hospedeiro e do patógeno. Larvas transgénico com fluorescentes inatos células do sistema imunológico pode ser usado para identificar os tipos específicos de células envolvidas na infecção 22-24. Modificados oligonucleótidos anti-sentido (Morpholinos) pode ser usado para derrubar vários componentes imunológicos, tais como NADPH oxidase de fagócitos e estudar as alterações em resposta a fungal infecção 5. Além das vantagens éticas e práticas da utilização de um vertebrado pequeno inferior, as larvas do peixe-zebra oferece a possibilidade única para a imagem da batalha lançada entre patógeno e tanto intravitally e na cor.

O peixe-zebra tem sido utilizada para a infecção modelo para um número de bactérias patogénicas humanas, e tem sido instrumental em grandes avanços na compreensão da infecção micobacteriana 3, 25. No entanto, só recentemente patógenos muito maiores, tais como fungos foram utilizados para infectar larvas 5, 23, 26, e até à data não tem havido uma descrição detalhada visual da metodologia infecção. Aqui apresentamos as nossas técnicas de microinjeção rombencéfalo ventrículo de zebrafish 25 prim, incluindo os nossos alterações aos protocolos anteriores. Nossos resultados utilizando o modelo de zebrafish larval para infecção fúngica divergem dos estudos in vitro e reforçam a necessidade de examinar a Intera patógeno-hospedeiroction no complexo ambiente do hospedeiro em vez do sistema simplificado da placa de Petri 5.

Protocol

Todos os protocolos de atendimento zebrafish e experimentos foram realizados sob Animal Care Institucional e Comitê de Uso (IACUC) protocolo A2009-11-01. 1. Morfolino e Pratos de injeção larval Duração Experimental: * (10-15 minutos) Grau de dificuldade: * Para injecções de ovo, preparar uma solução a 2% de agarose em água estéril e microondas. Quando a solução tiver arrefecido…

Discussion

O método de microinjecção peixe-zebra aqui apresentado difere da Gutzman et al. 34 em que aqui se demonstrar a injecção através da vesícula ótica para o ventrículo rombencéfalo de 36-48 larvas hpf. O método permite que descrevemos injectável consistente de 10-15 levedura para o ventrículo rombencéfalo com danos nos tecidos reduzida. Este protocolo produz uma infecção local que inicialmente se espalha em todo o corpo por 24 hpi (Figura 1) e resulta em letalidade signif…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer ao laboratório do Dr. Carol Kim para a formação microinjeção, Clarissa Henry para o conselho, que visa acelerar o desenvolvimento do embrião e utilização de equipamentos, e Nathan Lawson para contribuir fli1: peixe EGFP. Agradecemos os membros do laboratório Wheeler e Shawn Paredes para a leitura crítica do manuscrito. Gostaríamos também de agradecer a Mark Nilan para cuidado dos peixes e conselhos, e Ryan Phennicie e Kristin Gabor para consultoria técnica sobre este projeto. Este trabalho foi financiado por um estágio de pesquisa para MAFES K. Brothers, um MAFES escotilha concessão E08913-08, e um prêmio NIH NCRR P20RR016463 a R. Wheeler.

Materials

Name of the reagent Company Catalog number Comments (optional)
Spawning tanks Aquatic habitats  2L  
1.7 mL tubes Axygen MCT-175-C
Instant Ocean Fisher Scientific S17957C  
Extra deep Petri dishes Fisher Scientific 08-757-11Z  
Standard Petri dishes VWR Scientific 25384-302
Transfer pipettes Fisher Scientific 13-711-7M  
Yeast Extract VWR Scientific 90000-726  
Peptone VWR Scientific 90000-264  
Dextrose Fisher Scientific D16-1  
Agar VWR Scientific 90000-760  
Disposable Hemocytometer VWR Scientific 82030-468  
Phosphate Buffered Saline VWR Scientific 12001-986  
Dumont Dumoxel Tweezers VWR Scientific 100501-806  
Wooden Dowels VWR Scientific 10805-018
KimWipes VWR Scientific 300053-964
Low Melt Agarose VWR Scientific 12001-722  
Agarose for injection dishes VWR Scientific 12002-102
Flaming Brown Micropipette Puller Sutter Instruments P-97
Hollow glass rods Sutter Instruments BF120-69-10 For glass rods smooth glass by heating over bunsen burner 
Pipette Storage Box Sutter Instruments BX10
MPPI-3 Injection system Applied Scientific Instrumentation MPPI-3
Back Pressure Unit Applied Scientific Instrumentation BPU  
Micropipette Holder kit Applied Scientific Instrumentation MPIP  
Foot Switch Applied Scientific Instrumentation FSW  
Micromanipulator Applied Scientific Instrumentation MM33  
Magnetic Base Applied Scientific Instrumentation Magnetic Base  
Tricaine methane sulfonate Western Chemical Inc. MS-222  
Dissecting Scope Olympus SZ61 top SZX-ILLB2-100 base  
Confocal Microscope Olympus IX-81 with FV-1000 laser scanning confocal system  
TC-7 Tissue Culture Roller drum with 14 inch test tube wheel New Brunswick Scientific  TC-7  
Imaging Dishes MatTek Corporation P24G-1.0-10-F  
Pipette tips for loading needles Eppendorf 930001007  
Plate pouring grids Adaptive Science Tools TU-1
Heated Stage Bioptechs Inc. Delta T-5
Flat Spatula VWR Scientific 82027-486
Plastic Sieves Wares of Knutsford Online 12 cm
Parafilm VWR Scientific 52858-000
Vortex Genie VWR Scientific 14216-184
16 x 150 mm Culture tubes VWR Scientific 60825-435
Nanodrop Thermo Scientific ND 2000
Phenol Red VWR Scientific 97062-478
HCl VWR Scientific 87003-216
NaCl VWR Scientific BDH4534-500GP
KCl VWR Scientific BDH4532-500GP
MgSO4 VWR Scientific BDH0246-500GP
Ca(NO3)2 VWR Scientific BDH0226-500GP
HEPES VWR Scientific BDH4520-500GP
Morpholinos GeneTools, LLC

References

  1. Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., Zon, L. I. The use of zebrafish to understand immunity. Immunity. 20, 367-379 (2004).
  2. Kanther, M., Rawls, J. F. Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 22, 10-19 (2010).
  3. Meeker, N. D., Trede, N. S. Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol. 32, 745-757 (2008).
  4. Tobin, D., May, R. C., Wheeler, R. T. Zebrafish: a see-through host and fluorescent toolbox to probe host-pathogen interaction. PLoS Pathog. , (2011).
  5. Brothers, K. M., Newman, Z. R., Wheeler, R. T. Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot. Cell. 10, 932-944 (2011).
  6. Pfaller, M. A., Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133-163 (2007).
  7. Ashman, R. B. Innate versus adaptive immunity in Candida albicans infection. Immunol. Cell Biol. 82, 196-204 (2004).
  8. de Repentigny, L. Animal models in the analysis of Candida host-pathogen interactions. Curr. Opin. Microbiol. 7, 324-329 (2004).
  9. Rogers, T. J., Balish, E. Immunity to Candida albicans. Microbiol. Rev. 44, 660-682 (1980).
  10. Calderone, R., Sturtevant, J. Macrophage interactions with Candida. Immunol. Ser. 60, 505-515 (1994).
  11. Frohner, I. E., Bourgeois, C., Yatsyk, K., Majer, O., Kuchler, K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71, 240-252 (2009).
  12. Kumamoto, C. A., Vinces, M. D. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol. 7, 1546-1554 (2005).
  13. Lorenz, M. C., Bender, J. A., Fink, G. R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell. 3, 1076-1087 (2004).
  14. Rubin-Bejerano, I., Fraser, I., Grisafi, P., Fink, G. R. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 100, 11007-11012 (2003).
  15. Behnsen, J. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog. 3, e13 (2007).
  16. Lavigne, L. M. Integrin engagement mediates the human polymorphonuclear leukocyte response to a fungal pathogen-associated molecular pattern. J. Immunol. 178, 7276-7282 (2007).
  17. Newman, S. L., Bhugra, B., Holly, A., Morris, R. E. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 73, 770-777 (2005).
  18. Netea, M. G., Brown, G. D., Kullberg, B. J., Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67-78 (2008).
  19. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., Sin, Y. M. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 28, 9-28 (2004).
  20. Magnadottir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 20, 137-151 (2006).
  21. Sullivan, C., Kim, C. H. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25, 341-350 (2008).
  22. Lawson, N. D., Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307-318 (2002).
  23. Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A., Lieschke, G. J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 117, e49-e56 (2011).
  24. Renshaw, S. A. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108, 3976-3978 (2006).
  25. Lesley, R., Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish. Curr Opin. Microbiol. 11, 277-283 (2008).
  26. Chao, C. C. Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78, 2512-2521 (2010).
  27. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. , 203-253 (1995).
  28. Cianciolo Cosentino, C., Roman, B. L., Drummond, I. A., Hukriede, N. A. Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury. J. Vis. Exp. (42), e2079 (2010).
  29. Haddon, C., Lewis, J. Early ear development in the embryo of the zebrafish, Danio rerio. J. Comp. Neurol. 365, 113-128 (1996).
  30. Yuan, S., Sun, Z. Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. J. Vis. Exp. (27), e1113 (2009).
  31. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. J. Vis. Exp. (25), e1115 (2009).
  32. Ariga, J., Walker, S. L., Mumm, J. S. Multicolor Time-lapse Imaging of Transgenic Zebrafish: Visualizing Retinal Stem Cells Activated by Targeted Neuronal Cell Ablation. J. Vis. Exp. (43), e2093 (2010).
  33. Redd, M. J., Kelly, G., Dunn, G., Way, M., Martin, P. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil. Cytoskeleton. 63, 415-422 (2006).
  34. Gutzman, J. H., Sive, H. Zebrafish Brain Ventricle Injection. J. Vis. Exp. (26), e1218 (2009).
  35. Davis, J. M. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17, 693-702 (2002).
  36. Meijer, A. H. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev. Comp. Immunol. 32, 36-49 (2008).
  37. Mathias, J. R. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J. Cell Sci. 120, 3372-3383 (2007).
  38. Hall, C., Flores, M. V., Storm, T., Crosier, K., Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42 (2007).
  39. Vergunst, A. C., Meijer, A. H., Renshaw, S. A., O’Callaghan, D. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun. 78, 1495-1508 (2010).
  40. Le Guyader, D. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood. 111, 132-141 (2008).
  41. Clatworthy, A. E. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect. Immun. 77, 1293-1303 (2009).
  42. Brannon, M. K. Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell Microbiol. 11, 755-768 (2009).
  43. Levraud, J. P. Real-time observation of listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect. Immun. 77, 3651-3660 (2009).
  44. van der Sar, A. M. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol. 5, 601-611 (2003).
  45. Phennicie, R. T., Sullivan, M. J., Singer, J. T., Yoder, J. A., Kim, C. H. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect Immun. 78, 4542-4550 (2010).
  46. Prajsnar, T. K., Cunliffe, V. T., Foster, S. J., Renshaw, S. A. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol. 10, 2312-2325 (2008).

Play Video

Cite This Article
Brothers, K. M., Wheeler, R. T. Non-invasive Imaging of Disseminated Candidiasis in Zebrafish Larvae. J. Vis. Exp. (65), e4051, doi:10.3791/4051 (2012).

View Video