O desenvolvimento rápido, tamanho pequeno e transparência de peixes-zebra são enormes vantagens para o estudo do controle imunológico inato de infecção<sup> 1-4</sup>. Aqui demonstramos técnicas para infectar larvas do peixe utilizando o agente patogénico fúngica<em> Candida albicans</em> Por microinjeção, a metodologia usada recentemente para implicar atividade oxidase NADPH de fagócitos no controle de dimorfismo fúngico<sup> 5</sup>.
Candidíase disseminada causada pelo patógeno Cândida albicans é um problema clínico importante em indivíduos hospitalizados e está associada com uma mortalidade de 30 a 40% atribuível 6. A candidíase sistêmica é normalmente controlada pela imunidade inata, e indivíduos com defeitos genéticos em células imunes inatas componentes, tais como NADPH oxidase de fagócitos são mais suscetíveis à candidemia 7-9. Muito pouco é conhecido sobre a dinâmica de C. albicans interacção com as células imunes inatas in vivo. extensa em estudos in vitro demonstraram que fora do hospedeiro C. albicans germina dentro de macrófagos, e é rapidamente destruída por neutrófilos 10-14. Os estudos in vitro, embora úteis, não pode recapitular o complexo in vivo ambiente, que inclui dependentes do tempo dinâmica dos níveis de citocinas, anexos da matriz extracelular, e os contactos intercelulares 10, 15-18 </sup>. Para investigar a contribuição desses fatores no sistema patógeno-hospedeiro interação, é fundamental para encontrar um organismo modelo para visualizar estes aspectos da infecção não-invasiva em um hospedeiro vivo intacto.
A larva do peixe-zebra oferece um hospedeiro vertebrado único e versátil para o estudo da infecção. Durante os primeiros 30 dias de desenvolvimento larvas do peixe têm apenas inatas defesas imunitárias 2, 19-21, simplificando o estudo de doenças como a candidíase disseminada que são altamente dependentes da imunidade inata. O tamanho pequeno e transparência das larvas do peixe permitir imagem de dinâmica da infecção a nível celular, tanto para hospedeiro e do patógeno. Larvas transgénico com fluorescentes inatos células do sistema imunológico pode ser usado para identificar os tipos específicos de células envolvidas na infecção 22-24. Modificados oligonucleótidos anti-sentido (Morpholinos) pode ser usado para derrubar vários componentes imunológicos, tais como NADPH oxidase de fagócitos e estudar as alterações em resposta a fungal infecção 5. Além das vantagens éticas e práticas da utilização de um vertebrado pequeno inferior, as larvas do peixe-zebra oferece a possibilidade única para a imagem da batalha lançada entre patógeno e tanto intravitally e na cor.
O peixe-zebra tem sido utilizada para a infecção modelo para um número de bactérias patogénicas humanas, e tem sido instrumental em grandes avanços na compreensão da infecção micobacteriana 3, 25. No entanto, só recentemente patógenos muito maiores, tais como fungos foram utilizados para infectar larvas 5, 23, 26, e até à data não tem havido uma descrição detalhada visual da metodologia infecção. Aqui apresentamos as nossas técnicas de microinjeção rombencéfalo ventrículo de zebrafish 25 prim, incluindo os nossos alterações aos protocolos anteriores. Nossos resultados utilizando o modelo de zebrafish larval para infecção fúngica divergem dos estudos in vitro e reforçam a necessidade de examinar a Intera patógeno-hospedeiroction no complexo ambiente do hospedeiro em vez do sistema simplificado da placa de Petri 5.
O método de microinjecção peixe-zebra aqui apresentado difere da Gutzman et al. 34 em que aqui se demonstrar a injecção através da vesícula ótica para o ventrículo rombencéfalo de 36-48 larvas hpf. O método permite que descrevemos injectável consistente de 10-15 levedura para o ventrículo rombencéfalo com danos nos tecidos reduzida. Este protocolo produz uma infecção local que inicialmente se espalha em todo o corpo por 24 hpi (Figura 1) e resulta em letalidade signif…
The authors have nothing to disclose.
Os autores gostariam de agradecer ao laboratório do Dr. Carol Kim para a formação microinjeção, Clarissa Henry para o conselho, que visa acelerar o desenvolvimento do embrião e utilização de equipamentos, e Nathan Lawson para contribuir fli1: peixe EGFP. Agradecemos os membros do laboratório Wheeler e Shawn Paredes para a leitura crítica do manuscrito. Gostaríamos também de agradecer a Mark Nilan para cuidado dos peixes e conselhos, e Ryan Phennicie e Kristin Gabor para consultoria técnica sobre este projeto. Este trabalho foi financiado por um estágio de pesquisa para MAFES K. Brothers, um MAFES escotilha concessão E08913-08, e um prêmio NIH NCRR P20RR016463 a R. Wheeler.
Name of the reagent | Company | Catalog number | Comments (optional) |
Spawning tanks | Aquatic habitats | 2L | |
1.7 mL tubes | Axygen | MCT-175-C | |
Instant Ocean | Fisher Scientific | S17957C | |
Extra deep Petri dishes | Fisher Scientific | 08-757-11Z | |
Standard Petri dishes | VWR Scientific | 25384-302 | |
Transfer pipettes | Fisher Scientific | 13-711-7M | |
Yeast Extract | VWR Scientific | 90000-726 | |
Peptone | VWR Scientific | 90000-264 | |
Dextrose | Fisher Scientific | D16-1 | |
Agar | VWR Scientific | 90000-760 | |
Disposable Hemocytometer | VWR Scientific | 82030-468 | |
Phosphate Buffered Saline | VWR Scientific | 12001-986 | |
Dumont Dumoxel Tweezers | VWR Scientific | 100501-806 | |
Wooden Dowels | VWR Scientific | 10805-018 | |
KimWipes | VWR Scientific | 300053-964 | |
Low Melt Agarose | VWR Scientific | 12001-722 | |
Agarose for injection dishes | VWR Scientific | 12002-102 | |
Flaming Brown Micropipette Puller | Sutter Instruments | P-97 | |
Hollow glass rods | Sutter Instruments | BF120-69-10 | For glass rods smooth glass by heating over bunsen burner |
Pipette Storage Box | Sutter Instruments | BX10 | |
MPPI-3 Injection system | Applied Scientific Instrumentation | MPPI-3 | |
Back Pressure Unit | Applied Scientific Instrumentation | BPU | |
Micropipette Holder kit | Applied Scientific Instrumentation | MPIP | |
Foot Switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic Base | Applied Scientific Instrumentation | Magnetic Base | |
Tricaine methane sulfonate | Western Chemical Inc. | MS-222 | |
Dissecting Scope | Olympus | SZ61 top SZX-ILLB2-100 base | |
Confocal Microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
TC-7 Tissue Culture Roller drum with 14 inch test tube wheel | New Brunswick Scientific | TC-7 | |
Imaging Dishes | MatTek Corporation | P24G-1.0-10-F | |
Pipette tips for loading needles | Eppendorf | 930001007 | |
Plate pouring grids | Adaptive Science Tools | TU-1 | |
Heated Stage | Bioptechs Inc. | Delta T-5 | |
Flat Spatula | VWR Scientific | 82027-486 | |
Plastic Sieves | Wares of Knutsford Online | 12 cm | |
Parafilm | VWR Scientific | 52858-000 | |
Vortex Genie | VWR Scientific | 14216-184 | |
16 x 150 mm Culture tubes | VWR Scientific | 60825-435 | |
Nanodrop | Thermo Scientific | ND 2000 | |
Phenol Red | VWR Scientific | 97062-478 | |
HCl | VWR Scientific | 87003-216 | |
NaCl | VWR Scientific | BDH4534-500GP | |
KCl | VWR Scientific | BDH4532-500GP | |
MgSO4 | VWR Scientific | BDH0246-500GP | |
Ca(NO3)2 | VWR Scientific | BDH0226-500GP | |
HEPES | VWR Scientific | BDH4520-500GP | |
Morpholinos | GeneTools, LLC |