Die rasante Entwicklung, geringe Größe und Transparenz der Zebrafisch sind enorme Vorteile für das Studium der angeborenen Immunabwehr Kontrolle der Infektion<sup> 4.1</sup>. Hier zeigen wir Techniken zur Infektion mit dem Zebrafisch-Larven Pilzpathogen<em> Candida albicans</em> Durch Mikroinjektion, Methodik kürzlich verwendet, um Phagozyten NADPH-Oxidase-Aktivität in Kontrolle von Pilz-Dimorphismus implizieren<sup> 5</sup>.
Multipel Candidiasis durch das Pathogen Candida albicans ist ein klinisch bedeutendes Problem in Krankenhauspatienten mit einer 30 bis 40% auf Mortalität 6 zugeordnet ist. Systemische Candidiasis wird normalerweise durch angeborene Immunität kontrolliert, und Individuen mit genetischen Defekten in angeborenen Immunsystems Zellbestandteile wie Phagozyten NADPH-Oxidase sind anfälliger für Candidämie 09.07. Sehr wenig ist über die Dynamik von C bekannt albicans Interaktion mit Zellen des angeborenen Immunsystems in vivo. In umfangreichen in-vitro-Studien haben ergeben, dass außerhalb des Wirtes C. albicans keimt innerhalb von Makrophagen, und wird schnell durch Neutrophile 10-14 zerstört. In-vitro-Studien, aber nützlich, kann nicht rekapitulieren die komplexe in vivo-Umgebung, die zeitabhängige Dynamik Cytokinspiegel, extrazelluläre Matrix-Anhänge, Kontakte und interzellulären 10 enthält, 15-18 </sup>. Um den Beitrag dieser Faktoren bei der Wirt-Pathogen-Interaktion zu untersuchen, ist es wichtig, ein Modell zu finden Organismus, diese Aspekte der Infektion nicht-invasiv zu visualisieren in einer Live-Host intakt.
Die Zebrafischlarve bietet eine einzigartige und vielseitige Wirbeltier-Wirt für das Studium der Infektion. In den ersten 30 Tagen der Entwicklung Zebrafischlarven haben nur angeborene Immunabwehr 2, 19-21, Vereinfachung der Untersuchung von Krankheiten wie der disseminierten Candidiasis, die in hohem Maße von der angeborenen Immunität sind. Die geringe Größe und Transparenz der Zebrafischlarven erlauben Abbildungen von Infektionen Dynamik auf zellulärer Ebene sowohl für Wirt und Pathogen. Transgene Larven mit fluoreszierenden Zellen des angeborenen Immunsystems können bestimmte Zelltypen in 22-24 Infektion beteiligt zu identifizieren. Geändert Antisense-Oligonukleotide (Morpholinos) kann verwendet werden, um knock down verschiedenen Immun-Komponenten wie Phagozyten NADPH-Oxidase und studieren die Veränderungen als Reaktion auf Funga werdenl 5-Infektion. Zusätzlich zu den ethischen und praktischen Vorteile der Verwendung einer kleinen unteren Wirbeltieren, bietet das Zebrafisch-Larven die einzigartige Möglichkeit, das Bild Feldschlacht zwischen Erreger und Wirt sowohl intravital und in Farbe.
Der Zebrafisch hat, um Modell-Infektion wurde für eine Reihe von humanpathogenen Bakterien verwendet, und war maßgeblich an der großen Fortschritte in unserem Verständnis der Mykobakterieninfektion 3, 25. Doch erst in jüngster Zeit viel größer Krankheitserregern wie Pilzen verwendet worden, um Larven infizieren 5, 23, 26, und bis heute hat es nicht eine detaillierte visuelle Beschreibung der Methodik Infektion. Hier präsentieren wir unsere Techniken für Hinterhirn Ventrikel Mikroinjektion von prim 25 Zebrafisch, darunter Modifikationen an unseren früheren Protokollen. Unsere Ergebnisse unter Verwendung der Zebrafisch-Larven-Modell für die Pilzinfektion aus in vitro Studien divergieren und verstärken die Notwendigkeit, die Wirt-Erreger-Intera untersuchenktion in der komplexen Umgebung des Wirtes statt des vereinfachten Systems der Petrischale 5.
Der Zebrafisch Mikroinjektion hier vorgestellte Verfahren unterscheidet sich von Gutzman et al. 34 in diesem Hier zeigen wir Injektion durch die Ohr-Vesikel in die Herzkammer Rautenhirn von 36 bis 48 hpf Larven. Die Methode, die wir beschreiben, erlaubt das gleichmäßige Injektion von 10-15 Hefe in die Ventrikel mit eingeschränkter Hinterhirn Gewebeschädigung. Dieses Protokoll erzeugt eine zunächst lokale Infektion, die im ganzen Körper ausbreitet um 24 hpi (Abbildung 1) und fü…
The authors have nothing to disclose.
Die Autoren möchten dem Labor von Dr. Carol Kim für die Mikroinjektion Ausbildung, Clarissa Henry um Rat danken über die Beschleunigung Embryo-Entwicklung und Nutzung von Geräten, und Nathan Lawson für den Beitrag FLI1: EGFP Fisch. Wir danken Mitglieder der Wheeler-Labor und Shawn Wände für die kritische Durchsicht des Manuskripts. Wir möchten auch Mark Nilan für Fische Betreuung und Beratung, und Ryan Phennicie und Kristin Gabor für technische Beratung bezüglich dieses Projektes bedanken. Diese Arbeit wurde von einem MAFES Forschung Assistenzzeit an K. Brothers, ein MAFES Hatch Zuschuss E08913-08, und ein NIH NCRR Auszeichnung P20RR016463 zu R. Wheeler finanziert.
Name of the reagent | Company | Catalog number | Comments (optional) |
Spawning tanks | Aquatic habitats | 2L | |
1.7 mL tubes | Axygen | MCT-175-C | |
Instant Ocean | Fisher Scientific | S17957C | |
Extra deep Petri dishes | Fisher Scientific | 08-757-11Z | |
Standard Petri dishes | VWR Scientific | 25384-302 | |
Transfer pipettes | Fisher Scientific | 13-711-7M | |
Yeast Extract | VWR Scientific | 90000-726 | |
Peptone | VWR Scientific | 90000-264 | |
Dextrose | Fisher Scientific | D16-1 | |
Agar | VWR Scientific | 90000-760 | |
Disposable Hemocytometer | VWR Scientific | 82030-468 | |
Phosphate Buffered Saline | VWR Scientific | 12001-986 | |
Dumont Dumoxel Tweezers | VWR Scientific | 100501-806 | |
Wooden Dowels | VWR Scientific | 10805-018 | |
KimWipes | VWR Scientific | 300053-964 | |
Low Melt Agarose | VWR Scientific | 12001-722 | |
Agarose for injection dishes | VWR Scientific | 12002-102 | |
Flaming Brown Micropipette Puller | Sutter Instruments | P-97 | |
Hollow glass rods | Sutter Instruments | BF120-69-10 | For glass rods smooth glass by heating over bunsen burner |
Pipette Storage Box | Sutter Instruments | BX10 | |
MPPI-3 Injection system | Applied Scientific Instrumentation | MPPI-3 | |
Back Pressure Unit | Applied Scientific Instrumentation | BPU | |
Micropipette Holder kit | Applied Scientific Instrumentation | MPIP | |
Foot Switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic Base | Applied Scientific Instrumentation | Magnetic Base | |
Tricaine methane sulfonate | Western Chemical Inc. | MS-222 | |
Dissecting Scope | Olympus | SZ61 top SZX-ILLB2-100 base | |
Confocal Microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
TC-7 Tissue Culture Roller drum with 14 inch test tube wheel | New Brunswick Scientific | TC-7 | |
Imaging Dishes | MatTek Corporation | P24G-1.0-10-F | |
Pipette tips for loading needles | Eppendorf | 930001007 | |
Plate pouring grids | Adaptive Science Tools | TU-1 | |
Heated Stage | Bioptechs Inc. | Delta T-5 | |
Flat Spatula | VWR Scientific | 82027-486 | |
Plastic Sieves | Wares of Knutsford Online | 12 cm | |
Parafilm | VWR Scientific | 52858-000 | |
Vortex Genie | VWR Scientific | 14216-184 | |
16 x 150 mm Culture tubes | VWR Scientific | 60825-435 | |
Nanodrop | Thermo Scientific | ND 2000 | |
Phenol Red | VWR Scientific | 97062-478 | |
HCl | VWR Scientific | 87003-216 | |
NaCl | VWR Scientific | BDH4534-500GP | |
KCl | VWR Scientific | BDH4532-500GP | |
MgSO4 | VWR Scientific | BDH0246-500GP | |
Ca(NO3)2 | VWR Scientific | BDH0226-500GP | |
HEPES | VWR Scientific | BDH4520-500GP | |
Morpholinos | GeneTools, LLC |