Summary

下丘脑Kisspeptin神经元作为全细胞膜片钳记录的靶标

Published: March 17, 2023
doi:

Summary

在这里,我们提出了一种协议,用于对含有kisspeptin神经元的脑切片进行全细胞膜片钳,kisspeptin神经元是促性腺激素释放激素(GnRH)细胞的主要调节剂。通过增加有关kisspeptin神经元活性的知识,这种电生理工具已成为过去20年来神经内分泌领域取得重大进展的基础。

Abstract

Kisspeptins对于下丘脑 – 垂体 – 性腺(HPG)轴的成熟和生育能力至关重要。位于前腹侧脑室周围核和脑室周围核以及下丘脑弓形核中的下丘脑kisspeptin神经元投射到促性腺激素释放激素(GnRH)神经元等细胞。先前的研究表明,kisspeptin信号通过Kiss1受体(Kiss1r)发生,最终激发GnRH神经元活动。在人类和实验动物模型中,吻肽足以诱导GnRH分泌,从而诱导促黄体生成素(LH)和卵泡兴奋素(FSH)释放。由于kisspeptin在生殖功能中起着至关重要的作用,研究人员正在努力评估下丘脑kisspeptin神经元的内在活性如何有助于与生殖相关的行动,并确定能够改变这些特性的主要神经递质/神经调节剂。全细胞膜片钳技术已成为研究啮齿动物细胞中kisspeptin神经元活性的宝贵工具。这种实验技术使研究人员能够记录和测量细胞膜的自发兴奋性和抑制性离子电流、静息膜电位、动作电位放电和其他电生理特性。在本研究中,回顾了全细胞膜片钳技术的关键方面,称为定义下丘脑kisspeptin神经元的电生理测量,并讨论了有关该技术的相关问题。

Introduction

霍奇金和赫胥黎在几项科学研究中首次记录了动作电位。该记录是在鱿鱼轴突上进行的,该轴突具有大直径(~500μm),允许将微电极放置在轴突内。这项工作为科学研究提供了巨大的可能性,后来最终创建了电压钳模式,该模式用于研究动作电位产生12345678的离子基。多年来,该技术不断改进,并在科学研究中得到广泛应用69。膜片钳技术的发明发生在 1970 年代后期,通过 Erwin Neher 和 Bert Sakmann 发起的研究,使研究人员能够仅使用单个电极记录几乎所有类型细胞中的单离子通道和细胞内膜电位或电流910,1112.膜片钳记录可以在各种组织制剂上进行,例如培养的细胞或组织切片,在电压钳模式(将细胞膜保持在设定电压下,允许记录例如电压依赖性电流和突触电流)或电流钳模式(允许记录例如由离子电流引起的静息膜电位的变化, 动作电位和突触后电位频率)。

膜片钳技术的使用使几个值得注意的发现成为可能。事实上,关于位于前腹侧脑室周围和喙室周围核(AVPV/PeN Kisspeptin)的下丘脑kisspeptin神经元(也称为第三脑室的喙周围脑室区域(RP3V)和下丘脑弓形核(ARH kisspeptin)的电生理特性的开创性发现131415特别令人感兴趣。2010年,Ducret等人使用另一种电生理工具松散细胞膜片钳技术在小鼠中首次记录了AVPV / PeNKisspeptin神经元。这些研究提供了AVPV / PeNKisspeptin神经元的电学描述,并证明它们的放电模式是发情周期依赖性的16。2011年,Qiu等人使用全细胞膜片钳技术证明ARH基斯肽汀神经元表达内源性起搏器电流17。随后,Gottsch等人表明kisspeptin神经元表现出自发活动并表达h型(起搏器)和T型钙电流,这表明ARH吻肽蛋白神经元与其他中枢神经系统起搏器神经元具有电生理特性18。此外,已经证明ARH基斯肽汀神经元表现出性别二态性放电率,AVPV / PeN基斯肽汀神经元表现出受ATP敏感钾通道(K ATP)影响的双峰静息膜电位(RMP1920。此外,确定性腺类固醇对小鼠kisspeptin神经元的自发电活动产生积极影响192021。研究kisspeptin神经元电生理特性的第一项工作被提及1617181920。从那时起,许多研究使用全细胞膜片钳技术来证明哪些因子/神经调节剂足以调节kisspeptin神经元的电活动(图1)17,21,22,23,2425,26272829303132.

鉴于该技术对于研究生殖所需的神经元的重要性,以及此处未涵盖的其他细胞类型,本文描述了开发全细胞膜片钳技术的基本步骤,例如制备溶液,解剖和切片大脑,以及执行细胞膜密封以进行记录。此外,还讨论了有关该技术的相关问题,例如其优点,技术限制以及必须控制以获得最佳实验性能的重要变量。

Protocol

所有动物程序均由圣保罗大学生物医学科学研究所动物伦理委员会批准,并根据巴西动物实验学院采用的伦理准则进行。 1. 溶液的制备 内溶液的制备注意:内部溶液填充膜片钳微量移液器,并将接触细胞内部(参见 图2中的示例)。内部溶液可能因要测量的活动类型而异33.根据实验目的和适当的记录类型?…

Representative Results

为了研究人重组生长激素(hGH)对下丘脑kisspeptin神经元活性的可能影响,我们在脑切片中进行全细胞膜片钳记录,并评估这种激素是否引起AVPV / PeN基斯肽汀和ARH基斯肽神经元活性的急性变化。本研究使用成年Kiss1-Cre / GFP雌性(二线期)和雄性小鼠36。选择性腺完整的动物进行实验,因为它们的下丘脑kisspeptin神经元的性质可能因性类固醇水平而变化1…

Discussion

全细胞膜片钳技术的发展对科学界产生了重大影响,被认为对发展科学研究和实现多项发现至关重要。它对科学的影响足以在1991年获得诺贝尔医学奖,因为这一发现为更好地了解离子通道在生理和病理条件下的功能以及确定治疗剂的潜在靶点打开了大门11394041.在医学领域,使用该技术得出的突…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了圣保罗研究基金会[FAPESP资助号:2021/11551-4(JNS),2015/20198-5(TTZ),2019/21707/1(RF);以及由Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)-财务代码001“(HRV)的支持。

Materials

Compounds for aCSF, internal and slicing solutions
ATP Sigma Aldrich/various A9187
CaCl2 Sigma Aldrich/various C7902
D-(+)-Glucose Sigma Aldrich/various G7021
EGTA Sigma Aldrich/various O3777
HEPES Sigma Aldrich/various H3375
KCL Sigma Aldrich/various P5405
K-gluconate Sigma Aldrich/various G4500
KOH Sigma Aldrich/various P5958
MgCl2 Sigma Aldrich/various M9272
MgSO4 Sigma Aldrich/various 230391
NaCl Sigma Aldrich/various S5886
NaH2PO4  Sigma Aldrich/various S5011
NaHCO3 Sigma Aldrich/various S5761
nitric acid Sigma Aldrich/various 225711 CAUTION
Sucrose Sigma Aldrich/various S1888
Equipments
Air table TMC 63-534
Amplifier Molecular Devices Multiclamp 700B
Computer various
DIGIDATA 1440 LOW-NOISE DATA ACQUISITION SYSTEM Molecular Devices DD1440
Digital peristaltic pump Ismatec ISM833C 
Faraday cage TMC 81-333-03
Imaging Camera Leica DFC 365 FX
Micromanipulator Sutter Instruments Roe-200
Micropipette Puller Narishige PC-10
Microscope Leica DM6000 FS
Osteotome Bonther equipamentos & Tecnologia/various 128
Recovery chamber Warner Instruments/Harvard apparatus can be made in-house
Recording chamber Warner Instruments 640277
Spatula Fisher Scientific /various FISH-14-375-10; FISH-21-401-20
Vibratome  Leica VT1000 S
Water Bath  Fisher Scientific /various Isotemp
Software and systems
AxoScope 10 software Molecular Devices Commander Software
LAS X wide field system Leica Image acquisition and analysis
MultiClamp 700B Molecular Devices MULTICLAMP 700B Commander Software
PCLAMP 10 SOFTWARE FOR WINDOWS Molecular Devices Pclamp 10 Standard
Tools
Ag/AgCl electrode, pellet, 1.0 mm Warner Instruments 64-1309
Curved hemostatic forcep various
cyanoacrylate glue LOCTITE/various
Decapitation scissors various
Filter paper various
Glass capillaries (micropipette) World Precision Instruments, Inc TW150F-4
Iris scissors Bonther equipamentos & Tecnologia/various 65-66
Pasteur glass pipette  Sigma Aldrich/various CLS7095B9-1000EA
Petri dish various
Polyethylene tubing  Warner Instruments 64-0756
Razor blade for brain dissection TED PELLA TEDP-121-1
Razor blade for the vibratome TED PELLA TEDP-121-9
Scissors Bonther equipamentos & Tecnologia/various 71-72, 48,49; 
silicone teat various
Slice Anchor  Warner Instruments 64-0246
Syringe filters Merck Millipore Ltda SLGVR13SL Millex-GV 0.22 μm
Tweezers Bonther equipamentos & Tecnologia/various 131, 1518

References

  1. Bezanilla, F. Single sodium channels from the squid giant axon. Biophysical Journal. 52 (6), 1087-1090 (1987).
  2. Clay, J. R. Potassium current in the squid giant axon. International Review of Neurobiology. 27, 363-384 (1985).
  3. Gandini, M. A., Sandoval, A., Felix, R. Patch-clamp recording of voltage-sensitive Ca2+ channels. Cold Spring Harbor Protocols. 2014 (4), 329-325 (2014).
  4. Hodgkin, A. L., Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500-544 (1952).
  5. Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. Journal of Neuroscience Methods. 154 (1-2), 1-18 (2006).
  6. Suk, H. J., Boyden, E. S., van Welie, I. Advances in the automation of whole-cell patch clamp technology. Journal of Neuroscience Methods. 326, 108357 (2019).
  7. Cole, K. S., Curtis, H. J. Electric impedance of the squid giant axon during activity. The Journal of General Physiology. 22 (5), 649-670 (1939).
  8. Bernstein, J. Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms. Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere. 1 (1), 173-207 (1868).
  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv. 391 (2), 85-100 (1981).
  10. Hill, C. L., Stephens, G. J. An introduction to patch clamp recording. Methods in Molecular Biology. 2188, 1-19 (2021).
  11. Neher, E., Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260 (5554), 799-802 (1976).
  12. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annual Review of Physiology. 46, 455-472 (1984).
  13. Gottsch, M. L., et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 145 (9), 4073-4077 (2004).
  14. Smith, J. T., Cunningham, M. J., Rissman, E. F., Clifton, D. K., Steiner, R. A. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 146 (9), 3686-3692 (2005).
  15. Smith, J. T., et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 146 (7), 2976-2984 (2005).
  16. Ducret, E., Gaidamaka, G., Herbison, A. E. Electrical and morphological characteristics of anteroventral periventricular nucleus kisspeptin and other neurons in the female mouse. Endocrinology. 151 (5), 2223-2232 (2010).
  17. Qiu, J., Fang, Y., Bosch, M. A., Rønnekleiv, O. K., Kelly, M. J. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology. 152 (4), 1503-1514 (2011).
  18. Gottsch, M. L., et al. Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology. 152 (11), 4298-4309 (2011).
  19. de Croft, S., et al. Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback. Endocrinology. 153 (11), 5384-5393 (2012).
  20. Frazão, R., et al. Shift in Kiss1 cell activity requires estrogen receptor alpha. The Journal of Neuroscience. 33 (7), 2807-2820 (2013).
  21. DeFazio, R. A., Elias, C. F., Moenter, S. M. GABAergic transmission to kisspeptin neurons is differentially regulated by time of day and estradiol in female mice. The Journal of Neuroscience. 34 (49), 16296-16308 (2014).
  22. Mansano, N. D. S., et al. Vasoactive intestinal peptide exerts an excitatory effect on hypothalamic kisspeptin neurons during estrogen negative feedback. Molecular and Cellular Endocrinology. 542, 111532 (2022).
  23. Jamieson, B. B., Piet, R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Frontiers in Neuroendocrinology. 66, 101006 (2022).
  24. Silveira, M. A., et al. STAT5 signaling in kisspeptin cells regulates the timing of puberty. Molecular and Cellular Endocrinology. 448, 55-65 (2017).
  25. Silveira, M. A., et al. Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis. Brain Research. 1714, 210-217 (2019).
  26. Cravo, R. M., et al. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One. 8 (3), e58698 (2013).
  27. Manfredi-Lozano, M., et al. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism. 5 (10), 844-857 (2016).
  28. Qiu, J., et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metabolism. 19 (4), 682-693 (2014).
  29. de Croft, S., Boehm, U., Herbison, A. E. Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology. 154 (8), 2750-2760 (2013).
  30. Frazao, R., et al. Estradiol modulates Kiss1 neuronal response to ghrelin. American Journal of Physiology. Endocrinology and Metabolism. 306 (6), E606-E614 (2014).
  31. True, C., Verma, S., Grove, K. L., Smith, M. S. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology. 154 (8), 2821-2832 (2013).
  32. Navarro, V. M., et al. Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology. 152 (11), 4265-4275 (2011).
  33. Segev, A., Garcia-Oscos, F., Kourrich, S. Whole-cell patch-clamp recordings in brain slices. Journal of Visualized Experiments. (112), e54024 (2016).
  34. Gibson, A. G., Jaime, J., Burger, L. L., Moenter, S. M. Prenatal androgen treatment does not alter the firing activity of hypothalamic arcuate kisspeptin neurons in female mice. eNeuro. 8 (5), (2021).
  35. Paxinos, G., Franklin, K. B. J. The Mouse Brain. Stereotaxic Coordinates. 2nd edition. , (2001).
  36. Cravo, R. M., et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience. 173, 37-56 (2011).
  37. Emane, M. N., Delouis, C., Kelly, P. A., Djiane, J. Evolution of prolactin and placental lactogen receptors in ewes during pregnancy and lactation. Endocrinology. 118 (2), 695-700 (1986).
  38. Fuh, G., Colosi, P., Wood, W. I., Wells, J. A. Mechanism-based design of prolactin receptor antagonists. The Journal of Biological Chemistry. 268 (8), 5376-5381 (1993).
  39. Barinaga, M. Ion channel research wins physiology Nobel. Science. 254 (5030), 380 (1991).
  40. Colquhoun, D. Neher and Sakmann win Nobel Prize for patch-clamp work. Trends in Pharmacological Sciences. 12 (12), 449 (1991).
  41. Greger, R. Nobel Prize for Medicine and Physiology 1991. Analysis of the function of single ion channel. Deutsche Medizinische Wochenschrift. 116 (48), 1849-1851 (1991).
  42. Brau, M. E., Vogel, W., Hempelmann, G. Possible applications of the "patch-clamp" method in anesthesiologic research; comment. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie. 31 (9), 537-542 (1996).
  43. Cahalan, M., Neher, E. Patch clamp techniques: an overview. Methods in Enzymology. 207, 3-14 (1992).
  44. Kornreich, B. G. The patch clamp technique: principles and technical considerations. Journal of Veterinary Cardiology. 9 (1), 25-37 (2007).
  45. Neher, E., Sakmann, B. The patch clamp technique. Scientific American. 266 (3), 44-51 (1992).
  46. Sachs, F., Auerbach, A. Single-channel electrophysiology: use of the patch clamp. Methods in Enzymology. 103, 147-176 (1983).
  47. Dallas, M., Bell, D. . Patch Clamp Electrophysiology: Methods and Protocols. 1st edition. , (2021).
  48. Robinson, R. A., Stokes, R. H. . Electrolyte Solutions. 2nd edition. , (1959).
  49. de Souza, G. O., et al. Gap junctions regulate the activity of AgRP neurons and diet-induced obesity in male mice. The Journal of Endocrinology. 255 (2), 75-90 (2022).
  50. Houades, V., Koulakoff, A., Ezan, P., Seif, I., Giaume, C. Gap junction-mediated astrocytic networks in the mouse barrel cortex. The Journal of Neuroscience. 28 (20), 5207-5217 (2008).
  51. Richerson, G. B., Messer, C. Effect of composition of experimental solutions on neuronal survival during rat brain slicing. Experimental Neurology. 131 (1), 133-143 (1995).
  52. Pan, J. T., Li, C. S., Tang, K. C., Lin, J. Y. Low calcium/high magnesium medium increases activities of hypothalamic arcuate and suprachiasmatic neurons in brain tissue slices. Neuroscience Letters. 144 (1-2), 157-160 (1992).
  53. Hamill, O. P., McBride, D. W. Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annual Review of Physiology. 59, 621-631 (1997).
  54. Herbison, A. E., Moenter, S. M. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. Journal of Neuroendocrinology. 23 (7), 557-569 (2011).
  55. Qiu, J., et al. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife. 5, e16246 (2016).
  56. Chaves, F. M., Mansano, N. S., Frazão, R., Donato, J. Tumor necrosis factor α and interleukin-1β acutely inhibit AgRP neurons in the arcuate nucleus of the hypothalamus. International Journal of Molecular Sciences. 21 (23), 8928 (2020).
  57. Chaves, F. M., et al. Effects of the isolated and combined ablation of growth hormone and IGF-1 receptors in somatostatin neurons. Endocrinology. 163 (5), 045 (2022).
  58. Wasinski, F., et al. Growth hormone receptor in dopaminergic neurones regulates stress-induced prolactin release in male mice. Journal of Neuroendocrinology. 33 (3), e12957 (2021).
  59. Furigo, I. C., Ramos-Lobo, A. M., Frazao, R., Donato, J. Brain STAT5 signaling and behavioral control. Molecular and Cellular Endocrinology. 438, 70-76 (2016).
  60. Zampieri, T. T., et al. Postnatal overnutrition induces changes in synaptic transmission to leptin receptor-expressing neurons in the arcuate nucleus of female mice. Nutrients. 12 (8), 2425 (2020).
  61. Furigo, I. C., et al. Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nature Communication. 10 (1), 662 (2019).

Play Video

Cite This Article
Silva, J. d. N., Zampieri, T. T., Vieira, H. R., Frazao, R. Hypothalamic Kisspeptin Neurons as a Target for Whole-Cell Patch-Clamp Recordings. J. Vis. Exp. (193), e64989, doi:10.3791/64989 (2023).

View Video