Here, we present a protocol to perform a whole-cell patch-clamp on brain slices containing kisspeptin neurons, the primary modulator of gonadotrophin-releasing hormone (GnRH) cells. By adding knowledge about kisspeptin neuron activity, this electrophysiological tool has served as the basis for significant advancements in the neuroendocrinology field over the last 20 years.
Kisspeptins are essential for the maturation of the hypothalamic-pituitary-gonadal (HPG) axis and fertility. Hypothalamic kisspeptin neurons located in the anteroventral periventricular nucleus and rostral periventricular nucleus, as well as the arcuate nucleus of the hypothalamus, project to gonadotrophin-releasing hormone (GnRH) neurons, among other cells. Previous studies have demonstrated that kisspeptin signaling occurs through the Kiss1 receptor (Kiss1r), ultimately exciting GnRH neuron activity. In humans and experimental animal models, kisspeptins are sufficient for inducing GnRH secretion and, consequently, luteinizing hormone (LH) and follicle stimulant hormone (FSH) release. Since kisspeptins play an essential role in reproductive functions, researchers are working to assess how the intrinsic activity of hypothalamic kisspeptin neurons contributes to reproduction-related actions and identify the primary neurotransmitters/neuromodulators capable of changing these properties. The whole-cell patch-clamp technique has become a valuable tool for investigating kisspeptin neuron activity in rodent cells. This experimental technique allows researchers to record and measure spontaneous excitatory and inhibitory ionic currents, resting membrane potential, action potential firing, and other electrophysiological properties of cell membranes. In the present study, crucial aspects of the whole-cell patch-clamp technique, known as electrophysiological measurements that define hypothalamic kisspeptin neurons, and a discussion of relevant issues about the technique, are reviewed.
Hodgkin and Huxley made the first intracellular record of an action potential described in several scientific studies. This recording was performed on the squid axon, which has a large diameter (~500 µm), allowing a microelectrode to be placed inside the axon. This work provided great possibilities for scientific research, later culminating in the creation of the voltage-clamp mode, which was used to study the ionic basis of action potential generation1,2,3,4,5,6,7,8. Over the years, the technique has been improved, and it has become widely applied in scientific research6,9. The invention of the patch-clamp technique, which took place in the late 1970s through studies initiated by Erwin Neher and Bert Sakmann, allowed researchers to record single ion channels and intracellular membrane potentials or currents in virtually every type of cell using only a single electrode9,10,11,12. Patch-clamp recordings can be made on a variety of tissue preparations, such as cultured cells or tissue slices, in either voltage-clamp mode (holding the cell membrane at a set voltage allowing the recording of, for example, voltage-dependent currents and synaptic currents) or current-clamp mode (allowing the recording of, for example, changes in resting membrane potential induced by ion currents, action potentials, and postsynaptic potential frequency).
The use of the patch-clamp technique made several notable discoveries possible. Indeed, the seminal findings on the electrophysiological properties of hypothalamic kisspeptin neurons located at the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeNKisspeptin), also known as the rostral periventricular area of the third ventricle (RP3V), and the arcuate nucleus of the hypothalamus (ARHkisspeptin)13,14,15 are of particular interest. In 2010, Ducret et al. performed the first recordings of AVPV/PeNKisspeptinneurons in mice using another electrophysiological tool, the loose-cell patch-clamp technique. These studies provided an electrical description of AVPV/PeNKisspeptin neurons and demonstrated that their firing patterns are estrous cycle-dependent16. In 2011, Qiu et al. used the whole cell patch-clamp technique to demonstrate that ARHkisspeptin neurons express endogenous pacemaker currents17. Subsequently, Gottsch et al. showed that kisspeptin neurons exhibit spontaneous activity and express both h-type (pacemaker) and T-type calcium currents, suggesting that ARHkisspeptin neurons share electrophysiological properties with other central nervous system pacemaker neurons18. Additionally, it has been demonstrated that ARHkisspeptin neurons exhibit sexually dimorphic firing rates and that AVPV/PeNKisspeptin neurons exhibit a bimodal resting membrane potential (RMP) influenced by ATP-sensitive potassium channels (KATP)19,20. Furthermore, it was established that gonadal steroids positively affect the spontaneous electrical activity of the kisspeptin neurons in mice19,20,21. The first works that study kisspeptin neurons' electrophysiological properties are mentioned16,17,18,19,20. Since then, many studies have used the whole-cell patch-clamp technique to demonstrate which factors/neuromodulators are sufficient to modulate the electrical activity of kisspeptin neurons (Figure 1)17,21,22,23,24,25,26,27,28,29,30,31,32.
Given the importance of this technique for the study of neurons that are required for reproduction, among other cell types not covered here, this article describes the basic steps for the development of the whole-cell patch-clamp technique, such as preparing the solutions, dissecting and slicing the brain, and performing the seal of the cell membrane for recordings. Moreover, relevant issues about the technique are discussed, such as its advantages, technical limitations, and important variables that must be controlled for optimal experimental performance.
All animal procedures were approved by the Institute of Biomedical Sciences Animals Ethics Committee at the University of São Paulo and were performed according to the ethical guidelines adopted by the Brazilian College of Animal Experimentation.
1. Preparation of solutions
2. Brain dissection and slicing
NOTE: Since different brain structures may require cutting in different planes (coronal, sagittal, or horizontal slices), the exact approach for obtaining the slices depends on the brain region of interest. Typically, to study the Kiss1-expressing cells in the AVPV/PeN and ARH (here denominated as AVPV/PeNKisspeptin neurons and ARHkisspeptin neurons; Figure 2A,B), coronal brain slices (200-300 µm) are usually made17,19,20,21,34. The AVPV/PeNKisspeptin neurons are located approximately 0.5 to -0.22 mm from the bregma, whereas ARHkisspeptin neurons are at -1.22 to -2.70 mm. Nuclei location can be determined by using a stereotaxic mouse brain atlas35 or the Allen Mouse Brain Reference Atlas (http://mouse.brain-map.org/). Adult Kiss1-Cre/GFP female (diestrus-stage) and male mice36 were used in this study.
3. Cell sealing for recording
To study the possible effects of human recombinant growth hormone (hGH) on the activity of hypothalamic kisspeptin neurons, we performed whole-cell patch-clamp recordings in brain slices and assessed whether this hormone causes acute changes in the activity of AVPV/PeNKisspeptin and ARHkisspeptin neurons. Adult Kiss1-Cre/GFP female (diestrus-stage) and male mice36 were used in this study. Gonad-intact animals were selected for the experiments, since the properties of their hypothalamic kisspeptin neurons may vary depending on sex steroid levels19,20. While it was beyond the scope of the present study to evaluate differences between sexes, we refer the reader to Croft et al. and Frazão et al.19,20 for more information. Genetically modified animals, such as mice and rats, represent exciting tools for this type of experiment, since cells expressing a specific gene or a selective-induced ablation can be identified by a fluorescent protein such as GFP, among others23,26,36. The use of genetically modified mice represents a breakthrough in understanding kisspeptin neuron activity.
Recorded neurons (26 cells out of 12 animals) were determined according to neuroanatomical features35 and the expression of the endogenous GFP20. In current-clamp mode, neurons were recorded under I = 0 in whole-cell patch-clamp configuration. The AVPV/PeNKisspeptin neurons (12 cells from nine animals) exhibited an average RMP of -59.0 mV ± 3.0 mV (range: -75 mV to -46 mV), input resistance of 0.9 ± 0.1 GΩ, wcc of 12.3 pF ± 1.6 pF, and SR of 19.4 ± 1.9 mΩ. Among the recorded neurons, three out of 12 AVPV/PeNKisspeptin cells showed spontaneous discharges of action potentials (APs) at rest (0.1 Hz ± 0.06 Hz; average RMP of the spontaneously active cells was -50.7 mV ± 2.7 mV). The average RMP of ARHkisspeptin neurons (14 cells from 12 animals) was -50.0 mV ± 1.5 mV (range: -62 mV to -39 mV), the average input resistance was 1.7 ± 0.1 GΩ, wcc was 9.2 pF ± 0.7 pF, and SR of 16.9 ± 1.7 mΩ. Most ARHkisspeptin neurons were quiescent, whereas four out of 14 cells showed spontaneous APs at rest (0.9 Hz ± 0.5 Hz; average RMP of the spontaneously active cells was -52.7 mV ± 1.4 mV).
The administration of hGH (20 µg/g) to the bath induced a significant hyperpolarization of the RMP of many of the recorded neurons, five out of 12 AVPV/PeNKisspeptin neurons (≈55% of cells from 9 mice), and nine out of 14 recorded ARHkisspeptin neurons (≈65% of cells from 12 mice, p = 0.0006, Fisher's exact test; Figure 3). The AVPV/PeNKisspeptin and ARHkisspeptin hyperpolarized neurons significantly changed the RMP compared to the unresponsive cells (Figure 3B,E; Mann-Whitney test). The effects on RMP (Figure 3C,F; repeated measures ANOVA and Tukey's post-test) were followed by a significant reduction of the whole-cell input resistance (IR) on AVPV/PeNKisspeptin (0.9 ± 0.1 GΩ to 0.7 ± 0.1 GΩ during hGH application, p = 0.02; Figure 3D), and on ARHkisspeptin (1.7 ± 0.1 GΩ to 1.0 ± 0.1 GΩ during hGH application, p < 0.0001; repeated measures ANOVA and Tukey's post-test; Figure 3G) neurons. Additionally, the frequency of spontaneous APs (fAPs) of hGH-hyperpolarized neurons decreased in both populations of cells (0.1 Hz ± 0.06 Hz to 0.0 Hz ± 0.0 Hz in AVPV/PeNKisspeptin and 1.0 Hz ± 0.5 Hz to 0.2 Hz ± 0.1 Hz in ARHkisspeptin neurons). However, the extent of this decrease failed to reach a level of statistical significance (p > 0.05, Mann-Whitney test). After the hGH washout, the RMP and IR were restored to baseline (Figure 3A,C,D,F,G). The remaining kisspeptin neurons were unresponsive to hGH administration.
We have previously demonstrated that pGH induces no effects on hypothalamic kisspeptin neuron activity (please refer to Silveira et al.25; Figure 3H). Of note, it is known that hGH can activate prolactin (PRL) receptors in addition to GH receptors37,38. Besides, PRL indirectly depolarizes only ≈20% of AVPV/PeNKisspeptin neurons in mice24. In contrast, PRL does not modulate the fast synaptic transmission of the ARHkisspeptin cells24. Therefore, the hGH-induced hyperpolarization effect reported here seems to be nonspecific. The observed differences may depend on variables such as drug concentration, species difference (human vs. mouse), or even the presence of salts in the composition of the used drugs, as previously reported28.
Figure 1: Schematic diagram summarizing the whole-cell patch-clamp technique's contribution to the knowledge of the kisspeptin neurons' activity. Kisspeptin neurons (shown in green) are located in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) and arcuate nucleus of the hypothalamus (ARH). The AVPV/PeNKisspeptin and ARHkisspeptin cells send direct connections to gonadotrophin-releasing hormone (GnRH) neurons' soma located in the preoptic area (POA) and their terminals at the median eminence (ME), culminating in the modulation of the hypothalamus-pituitary-axis (HPG). Different neuromodulators, such as hormones, have been shown to differentially modulate the activity of the AVPV/PeNKisspeptin and ARHkisspeptin neurons. Possible effects on the resting membrane potential are schematically demonstrated by representative tracings obtained using the whole-cell path-clamp technique and current-clamp recordings. The red color indicates that a specific neurotransmitter induces the depolarization of the resting membrane potential (RMP)17,22,24,26,28,29,30,31,32; the blue color indicates no effect on RMP24,25,26,27,30. The dashed line indicates the RMP. Please click here to view a larger version of this figure.
Figure 2: Basic steps to obtain the sealing of the cell of interest by the whole-cell patch-clamp technique. (A,B) Representative photomicrographs of brain slices (250 µm) containing kisspeptin cells at the anteroventral periventricular nucleus (AVPV) and arcuate nucleus of the hypothalamus (ARH). Kisspeptin neurons were identified by green fluorescent protein (GFP) expression. (C) Photomicrograph demonstrating a micropipette (containing electrolyte solution [internal solution]) close enough to the cell to create a dimple in the plasma membrane to perform the seal. (D,E) Mild negative pressure (mouth suction performed on a tube attached to the headstage and micropipette) is required to seal the cell membrane to the micropipette (D). A second application of negative pressure (mild and brief) is necessary to induce the plasma membrane rupture (E). (F) The registration of the cell activity is performed by a mechanical setup used for patch-clamp experiments. After breaking the plasma membrane, currents flowing through the ionic channels in the patched cell can be recorded by an electrode connected to a highly sensitive amplifier. A feedback resistor generates the current needed for voltage-clamp (G) or current-clamp (H) recordings. Abbreviations: 3V = third ventricle; ME = median eminence. Scale bars: A = 130 µm, B = 145 µm, C = 20 µm, D = 15 µm. Please click here to view a larger version of this figure.
Figure 3: Testing drug specificity. (A) Representative current-clamp recording demonstrating that human recombinant growth hormone (hGH) induced a hyperpolarization of the resting membrane potential (RMP) of the kisspeptin neurons located at the arcuate nucleus of the hypothalamus (ARHkisspeptin). (B–G) Bar graphs demonstrating the average change in the resting membrane potential (RMP) (B,C,E,F) and average input resistance (IR) (D,G) of hGH-responsive kisspeptin neurons located at the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeNKisspeptin) (B–D) or ARH (E–G). Representative current-clamp recording demonstrating that porcine growth hormone (pGH) induced no effect on the RMP of ARHkisspeptin neurons, as previously reported25 (H). The significance tests used are the Mann-Whitney test for (B) and (E), and repeated measures ANOVA and Tukey's post-test for (C,D,F,G). The dashed line indicates the RMP. *p = 0.02; **p = 0.004,***p = 0.0003; ****p < 0.0001. Please click here to view a larger version of this figure.
Internal Solution (100 mL) | |||
Salt | FW (g/mol) | Concentration | Weight (g) |
K-gluconate | 234.2 | 120 mM | 2.81 |
NaCl | 58.4 | 1.0 mM | 0.006 |
KCl | 74.5 | 10 mM | 0.074 |
HEPES | 238.3 | 10 mM | 0.24 |
EGTA | 380.3 | 5.0 mM | 0.19 |
CaCl2 | 147.0 | 1.0 mM | 0.015 |
MgCl2 | 203.0 | 1.0 mM | 0.02 |
KOH | 56.11 | 3.0 mM | 0.017 |
ATP | 507.18 | 4.0 mM | 0.20 |
pH =7.3 / osmolarity = 275 – 280 mOsm |
Table 1: Reagents for the preparation of the internal solution. The table contains the molecular weight (FW), desired concentrations, and the calculated weight of the salts for the preparation of 100 mL of solution.
aCSF/Slicing Solution (250 mL) | |||
Salt | FW | Concentration | Weight (g) |
Sucrose | 342.3 | 238 mM | 18.5 |
KCL | 74.5 | 2.5 mM | 0.046 |
NaHCO3 | 84.0 | 26 mM | 0.546 |
NaH2PO4 | 120.0 | 1.0 mM | 0.03 |
MgCl2 | 203.0 | 5 mM | 0.254 |
D-glucose | 180.2 | 10 mM | 0.450 |
CaCl2 | 147.0 | 1.0 mM | 0.037 |
pH = 7.3 / osmolarity = 290 – 295 mOsm |
Table 2: Reagents to prepare the slicing solution. The table contains the molecular weight (FW), desired concentrations, and calculated weight of the salts for the preparation of 250 mL of solution. The brain is submerged in this solution to be sliced.
aCSF for recording (1 L) | |||
Salt | FW | Concentration | Weight (g) |
NaCl | 58.4 | 135 mM | 7.88 |
KCL | 74.5 | 3.5 mM | 0.261 |
NaHCO3 | 84.0 | 26 mM | 2,184 |
NaH2PO4 | 120.0 | 1.25 mM | 0.150 |
MgSO4 | 246.5 | 1.2 mM | 0.296 |
D-glucose | 180.2 | 10 mM | 1,802 |
CaCl2 | 147.0 | 1.0 mM | 0.148 |
pH = 7.3 / osmolarity = 290-300 mOsm |
Table 3: Reagents to prepare aCSF for recordings. The table contains the molecular weight (FW), desired concentrations, and calculated weight of the salts for the preparation of 1 L of solution.
Supplementary Figure 1: Example of an in-house made recovery chamber. (A,B) An in-house recovery chamber can be fabricated as follows: cut a 24-well plate so that nine wells are available. Glue a nylon screen to the base of the nine wells. With the remainder of the well plate, make a base so that the lower part of the nylon is free. (C) This adapted base can be placed inside a 500 mL beaker containing artificial cerebrospinal spinal fluid (aCSF) constantly saturated with carbogen (95% O2 and 5% CO2). (D) The beaker holding the recovery chamber is kept in the water bath during experimentation. (E,F) An acrylic transfer pipette is used to transfer the brain slices to the recovery chamber. Please click here to download this File.
The development of the whole-cell patch-clamp technique had a significant impact on the scientific community, being considered of paramount importance for developing scientific research and enabling several discoveries. Its impact on science was enough to culminate in the Nobel Prize in Medicine in 1991, as this discovery opened the door to a better understanding of how ion channels function under physiological and pathological conditions, as well as the identification of potential targets for therapeutic agents11,39,40,41. In the field of medicine, one of the outstanding findings made using this technique was that several substances used clinically interact directly with ion channels (e.g., local anesthetics, antiarrhythmics, antidiabetics, and muscle relaxants)42. Therefore, its applicability is evident in clinical institutes and basic research departments. This article describes the protocol for the basic preparation to perform whole-cell patch-clamp experiments on brain slices containing hypothalamic kisspeptin neurons. We outline the basic steps and highlight notable parameters that must be controlled to obtain tissue and prepare solutions for the patch-clamp technique. However, this article cannot fully describe the complexity of this technique and the mechanisms involved in each type of recording, especially the analysis. For further theoretical learning, some books and reviews on the patch-clamp technique are recommended10,43,44,45,46.
Each solution used in the patch-clamp method has a specific purpose; therefore, its specific compositions and criteria must be rigorously adopted during preparation. For example, the internal solution's composition should be determined according to the experiment's goal, since it varies depending on the type of current to be measured. The chloride-based solution mentioned here, in which Cl– (15 mM) mimics the physiological concentration of the cell cytoplasm47, is utilized to study active and passive neuronal properties or responses to synaptic input. It is important to emphasize that the chloride content in the internal solution keeps the chloride equilibrium potential at optimal levels for cell recording (in the mentioned solution ECL, it is about -59 mV). The intracellular chloride concentration can be estimated by evaluating the reversal potential for GABA-induced current (EGABA), assuming that all current through the GABAA receptor is carried by Cl–21,48. For the study of hypothalamic kisspeptin neurons, one must consider that the intracellular Cl– concentration for ARHkisspeptin is higher than for AVPV/PeNKisspeptin cells21. This characteristic must be considered when planning an experiment. The osmolarity of the internal solution is recommended to be at least 5% lower than that of aCSF for recordings to avoid loss of seal due to possible swelling and/or cell weakening33,47. If there is a need to add an intracellular compound that can be further used as a cell marker to the internal solution, such as biocytin or an intracellular dye (e.g., Alexa Fluor 594), K+ levels may be reduced so that osmolarity can be constantly maintained20,47,49,50.
Performing a rapid brain dissection and maintaining a low temperature (0-2 °C) during slicing with an appropriate slicing solution is crucial. The slicing solutions may differ according to the type of cell and/or brain region being evaluated33,47. The aCSF solution used to obtain the brain slices (i.e., slicing solution) usually has a different composition from the aCSF for recordings (for comparison, see Table 2 and Table 3). The cation (Ca2+ and Mg2+) concentrations can be adjusted to modify the excitability of neurons, which can also affect the firing threshold and neurotransmitter release47. Low Ca2+ and high Mg2+ media are widely utilized for minimizing possible excitotoxic processes (for more information, see51). In addition, low Ca2+ and high Mg2+ media can stimulate hypothalamic neuron activity52. Regarding the aCSF for recordings, some characteristics are similar. The buffer system is based on NaHCO3, high NaCl concentrations (generally >100 mM) and low KCl concentrations (generally <5 mM), relative concentrations of Ca2+ and Mg2+ (2:1 is often used) are usually around 2 mM, and glucose levels can range from 1 to 10 mM47. Besides variations of the solutions' osmolarity, pH, or temperature changes (digitally controlled to be between 30-32 °C), it is important to highlight that other issues may occur during the experimental protocol that substantially interfere with the experimentation. Electrophysiological measurements must be stable during the recordings, and any variations must have a critical reading. For example, SR changes account for cellular access in whole-cell mode and have considerable consequences on measured currents and potentials. Furthermore, it is important to emphasize that a relevant limitation related to the patch-clamp methodology that must be considered is mechanical overstimulation of the cell by excessive suction/pressure protocols that can induce morphological and functional changes53. This bias is often difficult to control in protocols where suction is performed by mouth rather than a device that can precisely control the suction intensity applied. Additionally, tissue-related issues, which culminate with a high percentage of cell mortality, may occur due to inadequate dissection, hypoxia, or the mouse's health condition that a researcher cannot identify by observation.
The main advantage of the whole-cell patch-clamp technique is the ability to record neurons in specific brain regions of interest precisely. This technique has tremendously benefited from the creation of genetically modified animals. Our group typically works with a mouse model that expresses the hrGFP under the Kiss1 gene promoter or another that expresses Cre-recombinase under the Kiss1 gene promoter and GFP under the Cre-conditional expression. However, there are many validated animal models nowadays23,26,36. In addition, the absence of the blood-brain barrier and the fact that the extracellular and intracellular environment can be easily controlled and manipulated represents advantages of this method; however, they do not necessarily represent a physiological condition. Among the limitations of this technique compared to in vivo preparations, or other recording types aiming to preserve the cytoplasmatic ionic concentration, such as on-cell or perforated-patch recordings, it is important to mention that the invasiveness of the whole-cell configuration causes dialysis of the cytoplasm content54. Dialysis may cause the interruption of molecular aspects necessary for some phenomena to develop or be expressed. By recording from slices, it needs to be remembered that most of the neurons' projections are sectioned. Thus, it is out of the technique's scope to evaluate how much this disruption impacts the observed effects or a physiological condition. As mentioned, coronal brain slices of 200-300 μm are usually performed to study the activity of hypothalamic kisspeptin neurons17,19,20,21,34. The limitation of using a thicker brain slice section to study kisspeptin cells and different slice angles maintaining specific AVPV/PeN or ARH connectivity55 needs further investigation. In addition, by testing the effect of a hormone/drug, synthetic or not, on the RMP of a neuron, several studies are based on the drug EC50 (if it is known) or on published data that demonstrate that a specific concentration is effective in activating firing rate or changing [Ca2+]i levels. However, one should be aware of the composition/specificity of the drug to be used in the experiments, as it is possible that purified synthetic drugs, compared to other similar drugs, may have antagonistic effects28. As demonstrated previously25, while purified pGH induces no effect on hypothalamic kisspeptin neuron activity, the hGH produced controversial data (see Figure 3). Similar results were demonstrated when insulin effects on the ARH were assessed28. Therefore, drug-specificity should be considered when planning an experiment and interpreting the obtained results.
The patch-clamp technique is an excellent tool for obtaining data about neuron electrical activity and has significantly contributed to the knowledge of several neuronal populations, such as the kisspeptin neurons. Most of the details provided here are generally used for recordings of hypothalamic neurons, as we have reported previously25,50,56,57,58,59,60. Importantly, for recording other neuronal populations besides kisspeptin neurons, one must know or determine the electrophysiological measurements that can help identify cell types, such as cell capacitance, SR, input resistance, cell firing pattern, and other parameters. These properties vary between different brain cells, brain nuclei, and physiological or induced conditions, such as circulating sex steroid levels16,19,20,21,61, which can substantially interfere with the critical analysis of the results. In addition, it is necessary to understand the possible variables involved in tissue preparation and their associated advantages and limitations to work with this technique. All the steps described here must be conducted judiciously, as any change in the variables involved in the protocol may drastically interfere with the results.
The authors have nothing to disclose.
This study was supported by the São Paulo Research Foundation [FAPESP grant numbers: 2021/11551-4 (JNS), 2015/20198-5 (TTZ), 2019/21707/1 (RF); and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001" (HRV).
Compounds for aCSF, internal and slicing solutions | |||
ATP | Sigma Aldrich/various | A9187 | |
CaCl2 | Sigma Aldrich/various | C7902 | |
D-(+)-Glucose | Sigma Aldrich/various | G7021 | |
EGTA | Sigma Aldrich/various | O3777 | |
HEPES | Sigma Aldrich/various | H3375 | |
KCL | Sigma Aldrich/various | P5405 | |
K-gluconate | Sigma Aldrich/various | G4500 | |
KOH | Sigma Aldrich/various | P5958 | |
MgCl2 | Sigma Aldrich/various | M9272 | |
MgSO4 | Sigma Aldrich/various | 230391 | |
NaCl | Sigma Aldrich/various | S5886 | |
NaH2PO4 | Sigma Aldrich/various | S5011 | |
NaHCO3 | Sigma Aldrich/various | S5761 | |
nitric acid | Sigma Aldrich/various | 225711 | CAUTION |
Sucrose | Sigma Aldrich/various | S1888 | |
Equipments | |||
Air table | TMC | 63-534 | |
Amplifier | Molecular Devices | Multiclamp 700B | |
Computer | various | – | |
DIGIDATA 1440 LOW-NOISE DATA ACQUISITION SYSTEM | Molecular Devices | DD1440 | |
Digital peristaltic pump | Ismatec | ISM833C | |
Faraday cage | TMC | 81-333-03 | |
Imaging Camera | Leica | DFC 365 FX | |
Micromanipulator | Sutter Instruments | Roe-200 | |
Micropipette Puller | Narishige | PC-10 | |
Microscope | Leica | DM6000 FS | |
Osteotome | Bonther equipamentos & Tecnologia/various | 128 | |
Recovery chamber | Warner Instruments/Harvard apparatus | – | can be made in-house |
Recording chamber | Warner Instruments | 640277 | |
Spatula | Fisher Scientific /various | FISH-14-375-10; FISH-21-401-20 | |
Vibratome | Leica | VT1000 S | |
Water Bath | Fisher Scientific /various | Isotemp | |
Software and systems | |||
AxoScope 10 software | Molecular Devices | – | Commander Software |
LAS X wide field system | Leica | – | Image acquisition and analysis |
MultiClamp 700B | Molecular Devices | MULTICLAMP 700B | Commander Software |
PCLAMP 10 SOFTWARE FOR WINDOWS | Molecular Devices | Pclamp 10 Standard | |
Tools | |||
Ag/AgCl electrode, pellet, 1.0 mm | Warner Instruments | 64-1309 | |
Curved hemostatic forcep | various | – | |
cyanoacrylate glue | LOCTITE/various | – | |
Decapitation scissors | various | – | |
Filter paper | various | – | |
Glass capillaries (micropipette) | World Precision Instruments, Inc | TW150F-4 | |
Iris scissors | Bonther equipamentos & Tecnologia/various | 65-66 | |
Pasteur glass pipette | Sigma Aldrich/various | CLS7095B9-1000EA | |
Petri dish | various | – | |
Polyethylene tubing | Warner Instruments | 64-0756 | |
Razor blade for brain dissection | TED PELLA | TEDP-121-1 | |
Razor blade for the vibratome | TED PELLA | TEDP-121-9 | |
Scissors | Bonther equipamentos & Tecnologia/various | 71-72, 48,49; | |
silicone teat | various | – | |
Slice Anchor | Warner Instruments | 64-0246 | |
Syringe filters | Merck Millipore Ltda | SLGVR13SL | Millex-GV 0.22 μm |
Tweezers | Bonther equipamentos & Tecnologia/various | 131, 1518 |