The present protocol describes a generalized and easy-to-implement scheme for tilted single-particle data collection in cryo-EM experiments. Such a procedure is especially useful for obtaining a high-quality EM map for samples suffering from preferential orientation bias due to adherence to the air-water interface.
Single-particle analysis (SPA) by cryo-electron microscopy (cryo-EM) is now a mainstream technique for high-resolution structural biology. Structure determination by SPA relies upon obtaining multiple distinct views of a macromolecular object vitrified within a thin layer of ice. Ideally, a collection of uniformly distributed random projection orientations would amount to all possible views of the object, giving rise to reconstructions characterized by isotropic directional resolution. However, in reality, many samples suffer from preferentially oriented particles adhering to the air-water interface. This leads to non-uniform angular orientation distributions in the dataset and inhomogeneous Fourier-space sampling in the reconstruction, translating into maps characterized by anisotropic resolution. Tilting the specimen stage provides a generalizable solution to overcoming resolution anisotropy by virtue of improving the uniformity of orientation distributions, and thus the isotropy of Fourier space sampling. The present protocol describes a tilted-stage automated data collection strategy using Leginon, a software for automated image acquisition. The procedure is simple to implement, does not require any additional equipment or software, and is compatible with most standard transmission electron microscopes (TEMs) used for imaging biological macromolecules.
The advent of direct electron detectors over the past decade1,2,3 has spurred an exponential increase in the number of high-resolution structures of macromolecules and macromolecular assemblies solved using single-particle cryo-EM4,5,6. Almost all purified macromolecular species are expected to be amenable to structure determination using cryo-EM, except for the smallest proteins ~10 kDa in size or below7. The amount of starting material needed for grid preparation and structure determination is at least an order of magnitude less than other structure determination techniques, such as nuclear magnetic resonance spectroscopy and X-ray crystallography4,5,6.
However, a principal challenge for structure determination by cryo-EM involves suitable grid preparation for imaging. An extensive study evaluating diverse samples using different vitrification strategies and grids suggested that most approaches for vitrifying samples on cryo-EM grids lead to preferential adherence of macromolecules to the air-water interface8. Such adherence can potentially cause four suboptimal outcomes: (1) the macromolecular sample completely denatures, in which case no successful data collection and processing is possible; (2) the sample partially denatures, in which case it may be possible to obtain structural insights from regions of the macromolecule that are not damaged; (3) the sample retains native structure, but only one set of particle orientations relative to the direction of the electron beam are represented in the images; (4) the sample retains native structure, and some but not all possible particle orientations relative to the direction of the electron beam are represented in the images. For cases (3) and (4), tilted data collection will help with minimizing directional resolution anisotropy affecting the reconstructed cryo-EM map and provides a generalizable solution for a wide variety of samples9. Technically, tilting can also benefit case (2), since the denaturation presumably occurs at the air-water interface and similarly limits the number of distinct orientations represented within the data. The extent of orientation bias in the dataset can potentially be altered by experimenting with solution additives, but a lack of broad applicability hampers these trial-and-error approaches. Tilting the specimen stage at a single optimized tilt angle is sufficient to improve the distribution of orientations by virtue of altering the geometry of the imaging experiment9 (Figure 1). Due to the geometric configuration of the preferentially-oriented sample with respect to the electron beam, for each cluster of preferential orientations, tilting the grid generates a cone of illumination angles with respect to the cluster centroid. Hence, this spreads out the views and consequently improves Fourier space sampling and the isotropy of directional resolution.
There are, in practice, some detriments to tilting the stage. Tilting the specimen stage introduces a focus gradient across the field of view, which may affect the accuracy of contrast transfer function (CTF) estimations. Tilted data collection may also lead to increased beam-induced particle movement caused by increased charging effects when imaging tilted specimens. Grid tilting also leads to an increase in apparent ice thickness, which in turn leads to noisier micrographs and may ultimately impact the resolution of reconstructions5,9,10. It may be possible to overcome these issues by applying advanced computational data-processing schemes that are briefly described in the protocol and discussion sections. Lastly, tilting can lead to increased particle overlap, hindering the subsequent image processing pipeline. Although this can be mitigated to some extent by optimizing on-grid particle concentration, it is nonetheless an important consideration. Here, a simple-to-implement protocol is described for tilted data collection using the Leginon software suite (an automated image acquisition software), available open access and compatible with a broad range of microscopes11,12,13,14. The method requires at least version 3.0 or higher, with versions 3.3 onward containing dedicated improvements to enable tilted data collection. No additional software or equipment is necessary for this protocol. Extensive instructions on computational infrastructure and installation guides are provided elsewhere15.
1. Sample preparation
2. Setting up tilted data collection
3. Data Processing
DPS at 0.3 mg/mL was used to demonstrate imaging at 0°, 30°, and 60° tilts. Data from different tilt angles were collected on the same grid at different grid regions. CTF resolution fits for higher angle tilts tend to be poorer, as was the case when comparing the three datasets in this study. Figure 4 demonstrates comparative representative images and 2D classification averages. Although the protein concentration is unchanged across the different tilt angles, a higher tilt angle makes the imaged area appear more crowded in terms of particle concentration. This can be problematic for data processing because particle overlap can complicate 3D reconstructions and angular refinements. Iterative 2D classification routinely produced a clean stack of particles with the 0° and 30° tilted datasets, whereas the 60° dataset required careful cleaning of the particle stacks to ensure that class averages show minimal overlap for adjacent particles. The class average from Figure 4C in the red box represents an example of particle overlap. Although re-centering during classification can result in the signal from neighboring particles getting averaged, substantial particle overlap can compromise the accuracy of particle alignment parameters, yielding reconstructions characterized by lower resolution. The best solution to avoid particle overlap is to pre-screen grids with optimal ice thickness and particle distribution. A comprehensive quantitative overview of the metrics to evaluate improvements from tilted data collection is described elsewhere32.
Figure 1: Overview of advantages and challenges with tilted data collection. The top panel shows a close-up view of a grid hole. Grid bars are in gold, vitreous ice blue, and macromolecular particles red. Arrows indicate the direction of the electron beam. The bottom panel represents a collection of holes with the same coloring scheme as in the top panel. The black star represents the fine focus target prior to exposure image acquisition at high magnification. The tilt angle is indicated as 'α'. Please click here to view a larger version of this figure.
Figure 2: Workflow diagram comparing untilted and tilted data collection strategy. Stepwise comparison of untilted and tilted data collection shows the additional step of manually estimating the eucentric height and re-centering for each tilted square (2 and 3 for tilted data collection). The rest of the workflow is similar between the two strategies. These include selecting a suitable square for imaging (1 for tilted and untilted data collection), initiating a queueing scheme by choosing a square for imaging (referred to as simulate; 2 and 4 for untilted and tilted data collection, respectively), providing a eucentric height focus target and queue hole magnification acquisition targets (3 and 5 for untilted and tilted data collection, respectively). and finally submitting the queue of selected high magnification exposure targets (4 and 6 for untilted and tilted data collection, respectively). Please click here to view a larger version of this figure.
Figure 3: Representative images of the grid at square magnification with different tilt angles. Images collected near and far from eucentric Z-height are shown on the top and bottom panels, respectively. The optical axis of the beam is indicated by the center of the red concentric rings. The green arrow indicates the square of interest. There is a broken grid feature adjacent to the square of interest for reference. The objective aperture is removed for ease of viewing. Scale bar = 20 µM. Please click here to view a larger version of this figure.
Figure 4: Representative hole exposures and 2D class averages collected at different tilt angles. Panels (A), (B), and (C) refer to imaging performed with the specimen stage untilted at 0° or tilted to 30° and 60°. 2D class averages affected by overcrowding are shown in the red box in (C). Scale bar = 100 nm. Please click here to view a larger version of this figure.
Preferred particle orientation caused by specimen adherence to the air-water interface is one of the last major bottlenecks to routine high-resolution structure determination using cryo-EM SPA4,5,6. The data collection scheme presented here provides an easy-to-implement strategy for improving the orientation distribution of particles within a dataset. We note that the protocol requires no additional equipment or software and does not affect the data collection speed. The following considerations are important during data acquisition for tilted specimens.
Firstly, the imaged square must be at eucentric height for optimal targeting. Eucentric height is adjusted by recording tilt-pair images at small stage tilt angles (usually 0.5°-2°) and identifying focus based on a pre-defined relationship between image shift and defocus. If the targeted square requires a large adjustment in eucentric height, this will result in a significant image shift of the square image, such that when the stage is tilted again, the field of view may be blocked by the objective aperture.
Secondly, the normally circular hole becomes increasingly oblong with higher tilts at medium magnification (Hole Acquisition Node magnification). In the absence of accurate image-shift calibrations, it is possible that part of the foil may be imaged along with particles embedded in vitreous ice for a given exposure magnification. Therefore, ideally, the image-shift calibrations have to be accurate. An alternative is to increase the magnification such that the imaged area relative to hole size decreases. At higher magnification, errors in beam tilt-induced image-shift would have a smaller effect on a user's ability to navigate to an area of vitreous ice. However, this comes at the expense of diminishing the number of particles in the resulting micrographs, proportional to an increase in magnification.
Thirdly, autofocus has a greater chance of failing for tilted data collection due to increased beam-induced motion and increased specimen thickness. Thus, achieving accurate focus can, occasionally, present some challenges for tilted data collection, especially if the focus target is the gold foil in the center of four holes, which is standard practice for untilted data collection. In cases of frequent focus estimation failures, an alternative is to set the edge of a hole as the focus target. This must provide a sufficient signal for accurate phase correlation between beam tilt-induced image pairs and subsequent focus adjustment. In our experience, focusing on the edge of a hole rarely results in autofocus failure.
And lastly, when high-magnification images are selected far from the grid center, the difference in focus between targeted images on opposite sides of the tilt axis may be significant. The magnitude of this difference is dependent on the tilt angle and the distance from the point of focus. For example, at a tilt angle of 30°, two targets that are 6 μm apart on the surface of the grid and selected exactly perpendicular to the tilt axis will have a 3 μm difference in defocus between them (the relationship is: delta defocus = sin (tilt angle) * (distance from tilt axis)). Targets selected along the tilt axis will have the same defocus, whereas others will fall somewhere between. If the tilt axis is defined in Leginon during calibration, the software automatically compensates for the change in defocus. However, users must be aware that the possibility of having larger focus gradients during high-magnification imaging nonetheless exists. Large focus gradients should minimally affect the final reconstruction33, but it may be necessary to use larger box sizes during data processing to prevent aliasing effects. Under these circumstances, using a narrower defocus range during data acquisition may be warranted, and randomization of defocus comes naturally from tilting the stage. Per-particle defocus adjustments during data processing can improve resolutions of final reconstructions. However, since accurate modeling of CTF fits may be challenging for high stage-tilt angles, care must be taken to monitor the quality of the data, and the CTF fits during exposure curation. Generally, sub-optimal ice thickness results in poorer accuracy in modeling CTF estimation fits. Therefore, care must be taken to image in areas where the ice is thin, assuming that the particle distribution is sufficiently good in these areas.
An improved and more uniform orientation distribution leads to a corresponding improvement in the directional resolution of the reconstructed cryo-EM maps. In addition, a more uniform orientation distribution improves the sampling compensation factor, which directly relates to global resolution30,31. Thus, collectively improving the orientation distribution should improve the accuracy of atomic modeling and refinement9,30,31. This would, in principle, provide a strong case for routine implementation of tilted data collection. However, there are several caveats the user must be aware of. First, the increased focus gradient and ice thickness can impact overall global resolution, presumably due to a combination of increased background noise and increased beam-induced motion, combined with other indirect issues that arise as a result17. This effect is expected to be more pronounced in cases where the ice is inherently thicker. However, since most samples suffer from some amount of preferred orientation, which may in turn lead to sampling non-uniformity, tilted data collection may be generally beneficial as long as the detrimental effects are minimized or mitigated. Second, it may be necessary to tilt the stage as high as 60° for some samples characterized by severe preferential orientation. Anecdotal unpublished evidence from our work and colleagues' reports suggests that even ~40° tilts are insufficient to overcome resolution anisotropy for some specimens. Efforts toward identifying an optimal tilt angle for a set of distributions are underway, based on the ideas laid out in Baldwin et al.31. Lastly, one should note that, in principle, a reconstruction from a sample characterized by a perfectly pathological single preferred orientation would still have a 30° missing cone even when the data is collected at a 60° tilt angle. In simulated experiments, a 30° missing cone is unlikely to affect experimental interpretations greatly. A 60° tilt is probably sufficient for even the most pathologically preferentially oriented specimens. However, in cases where the stage may have to be tilted by as much as 60°, the concentration of particles in the field of view needs to be carefully optimized, since particle overlap will complicate data processing. It is not possible to tilt to more than 60° (or 70° on select microscope stages) on standard TEMs, due to limitations of the sample stage design. In such cases, additional optimization with additives and sample biochemistry may be required.
The authors have nothing to disclose.
We thank Bill Anderson, Charles Bowman, and Jean-Christophe Ducom (TSRI) for help with microscopy, Leginon installations, and data transfer infrastructure. We also thank Gordon Louie (Salk Institute) and Yong Zi Tan (National University of Singapore) for the critical reading of the manuscript. We thank Chris Russo (MRC Laboratory of Molecular Biology, Cambridge) for providing us with the plasmid for expression of DPS. This work was supported by grants from the US National Institutes of Health (U54AI150472, U54 AI170855, and R01AI136680 to DL), the National Science Foundation (NSF MCB-2048095 to DL), the Hearst Foundations (to DL), and Arthur and Julie Woodrow Chair (to J. P. N.). T.S. is supported by an F32 postdoctoral fellowship from the National Institutes of Health (GM148049).
Cryosparc Live v3.1.0+210216 | Structura Biotechnology | ||
DPS protein | Purification adapted from protocol described in K.Naydenova et al IUCrJ. 2019 Nov 1; 6(Pt 6): 1086–1098. | ||
K2 Summit Direct Electron Detector | Gatan | ||
Leginon software suite | C Suloway et al Journal of Structural Biology 151 (1): pp. 41-60. | ||
Manual plunging device | Homemade guillotine-like device for vitrification of EM grids | ||
Talos Arctica | FEI/Thermo Fisher | ||
UltrAufoil R1.2/1.3 300 mesh grids | Quantifoil | N1-A14nAu30-01 |