La imagen in vivo es una poderosa herramienta que se puede utilizar para investigar los mecanismos celulares subyacentes al desarrollo del sistema nervioso. Aquí describimos una técnica para el uso de la microscopía confocal de lapso de tiempo para visualizar un gran número de células etiquetadas en Brainbow multicolor en tiempo real dentro del sistema nervioso de pez cebra en desarrollo.
El desarrollo del sistema nervioso vertebrado requiere una coordinación precisa de comportamientos e interacciones celulares complejos. El uso de técnicas de imagen in vivo de alta resolución puede proporcionar una ventana clara a estos procesos en el organismo vivo. Por ejemplo, las células divisorias y su progenie se pueden seguir en tiempo real a medida que se forma el sistema nervioso. En los últimos años, los avances técnicos en técnicas multicolor han ampliado los tipos de preguntas que se pueden investigar. El enfoque brainbow multicolor se puede utilizar no sólo para distinguir entre celdas similares, sino también para codificar por colores varios clones diferentes de celdas relacionadas que cada uno deriva de una celda progenitora. Esto permite un análisis de linaje multiplex de muchos clones diferentes y sus comportamientos simultáneamente durante el desarrollo. Aquí describimos una técnica para el uso de la microscopía confocal de lapso de tiempo para visualizar un gran número de células etiquetadas en Brainbow multicolor es en tiempo real dentro del sistema nervioso de pez cebra en desarrollo. Esto es particularmente útil para seguir las interacciones celulares entre células similares, que son difíciles de etiquetar diferencialmente utilizando colores tradicionales impulsados por el promotor. Nuestro enfoque se puede utilizar para rastrear las relaciones de linaje entre varios clones diferentes simultáneamente. Los grandes conjuntos de datos generados con esta técnica proporcionan información rica que se puede comparar cuantitativamente a través de manipulaciones genéticas o farmacológicas. En última instancia, los resultados generados pueden ayudar a responder preguntas sistemáticas sobre cómo se desarrolla el sistema nervioso.
En las primeras fases del desarrollo, las piscinas de células progenitoras especializadas se dividen repetidamente en zonas proliferativas, produciendo diversos arreglos de células hijas. Las células nacidas durante este período de desarrollo se diferenciarán y viajarán para formar los órganos nacientes. En el sistema nervioso, los progenitores como la glia radial dan lugar a neuronas inmaduras en zonas ventriculares. A medida que las neuronas se alejan de los ventrículos y maduran, el tejido en expansión eventualmente forma las estructuras altamente complejas del cerebro1,2,3,4,5,6. La coordinación entre la división de los progenitores y la diferenciación y migración de las neuronas determinará el tamaño, la forma y, por tanto, la función del cerebro, afectando directamente al comportamiento7,8,9,10. Si bien el control estricto sobre estos procesos es claramente crucial para el desarrollo normal del cerebro, los mecanismos globales que regulan estas dinámicas no se entienden bien. Aquí describimos una herramienta para estudiar el desarrollo del sistema nervioso a una resolución celular, permitiendo a los investigadores visualizar las células progenitoras y las neuronas in vivo en el cerebro de pez cebra en desarrollo con Brainbow y realizar un seguimiento de su comportamiento a lo largo del tiempo a través de la microscopía confocal de lapso de tiempo11. El enfoque también se puede adaptar para visualizar otras partes del embrión en desarrollo.
Para observar y distinguir entre las células en el cerebro de pez cebra en desarrollo, hemos adaptado la técnica de etiquetado celular Brainbow11. Brainbow utiliza la expresión combinatoria determinada aleatoriamente de tres proteínas fluorescentes distintas (FP) para etiquetar una población de células. Mientras que la expresión predeterminada para la expresión de Brainbow es el FP rojo dTomato, la recombinación por la enzima Cre recombinase da como resultado la expresión de mCerulean (proteína fluorescente cian, CFP) o proteína fluorescente amarilla (YFP)12,13. La cantidad combinada de cada FP expresada en una celda le da un matiz único, lo que permite una clara distinción visual de las celdas vecinas. Además, cuando una célula progenitora se divide, cada célula hija heredará el color de su célula madre, produciendo clones codificados por colores y permitiendo a los investigadores rastrear el linaje celular11,14. Aunque originalmente se utiliza bañó para analizar circuitos neuronales en ratones12,Brainbow se ha expresado desde entonces en una amplia variedad de organismos modelo, incluyendo el pez cebra15.
Nuestra técnica se basa en métodos anteriores de etiquetado y imagen multicolor para crear imágenes directamente de varios clones codificados por colores a lo largo del tiempo en peces cebra vivos. Debido a su transparencia óptica como embriones, los peces cebra son muy adecuados para los experimentos de imagen16,y estudios anteriores han utilizado Brainbow en el pez cebra para estudiar una variedad de tejidos, incluyendo el sistema nervioso11,15,17,18,19,20,21,22,23,24,25, 26,27. La capacidad de imagen directa en el organismo vivo, junto con su rápido desarrollo ex utero, hacen del pez cebra un modelo valioso de desarrollo de vertebrados. A diferencia del cerebro de los mamíferos, toda la zona proliferativa del cerebro trasero del pez cebra está fácilmente disponible para la toma de imágenes sin interrupción de su entorno endógeno6. Esto permite que los experimentos se lleven a cabo en el organismo vivo, en lugar de en preparaciones de tejido sin vitro o fijos. A diferencia de los experimentos de imágenes fijas, los estudios in vivo permiten un diseño longitudinal, produciendo horas de datos que se pueden analizar en busca de patrones, aumentando así la probabilidad de observar eventos relativamente raros. Dependiendo de la velocidad y la duración de los eventos de interés, los investigadores pueden optar por realizar experimentos cortos (1-2 h) o largos (hasta 16 h) de imágenes de lapso de tiempo. Mediante el uso del promotor de choque térmico de pez cebra 70 (hsp70, hsp), la expresión de Brainbow se puede controlar temporalmente28,29. Además, la expresión de mosaico inducida por este promotor es muy adecuada para etiquetar y rastrear muchos clones11.
La capacidad de identificar visualmente múltiples clones dentro del cerebro vivo es una ventaja de este método. Importantes estudios previos que investigaron el papel de los clones dentro del desarrollo del sistema nervioso utilizaron vectores retrovirales para etiquetar una sola célula progenitora y su progenie usando una sola FP u otra proteína fácilmente visualizada. Dicho etiquetado permite a los investigadores observar un solo clon a lo largo del tiempo, ya sea in vitro o in vivo2,,30,31,32,33,34,35,36,37,38. A diferencia de los métodos para rastrear el comportamiento de las células dentro de un clon, los distintos colores de Brainbow permiten a los investigadores observar la dinámica entre los clones. Además, al usar Brainbow para etiquetar muchos clones dentro del cerebro, se recopilan datos adicionales sobre el comportamiento clonal en relación con las técnicas que etiquetan un solo clon11. Es importante destacar que los enfoques descritos aquí se pueden ampliar para generar comparaciones de desarrollo entre peces que han sufrido diferentes manipulaciones genéticas o farmacológicas18. En general, estas ventajas hacen que las imágenes confocales in vivo de barcoiris expresen el tamaño de los peces cebra sean ideales para investigadores que exploran el desarrollo del sistema nervioso de los vertebrados, en particular aquellos interesados en el papel de los clones.
Este protocolo describe un método para visualizar clones de células progenitoras y neuronas en el cerebro trasero de pez cebra en desarrollo y seguirlos in vivo utilizando Brainbow y la microscopía confocal de lapso de tiempo11. La principal ventaja de este protocolo en comparación con los estudios in vitro o ex vivo es la capacidad de observar directamente la zona proliferativa del cerebro vertebrado en su entorno natural a lo largo del tiempo. Esta técnica se basa en estudios anteriores que…
The authors have nothing to disclose.
Agradecemos a Y. A. Pan, J. Livet y Z. Tobias por sus contribuciones técnicas e intelectuales. Este trabajo fue apoyado por la National Science Foundation (Premio 1553764) y el M.J. Murdock Charitable Trust.
1.5mL transfer pipet | Globe Scientific, Inc. | 134020 | |
1-phenyl-2-thiourea (PTU) | Alfa Aesar | L06690 | Diluted to 0.2 mM in E3 to prevent embryo pigmentation |
50ml conical tubes | Corning | 352070 | For heat shocking embryos |
6 lb nylon fishing line | SecureLine | NMT250 | For making embryo manipulators |
7.5mL transfer pipet | Globe Scientific, Inc. | 135010 | |
CaCl2 | Sigma | C3881 | For E3 |
Cotton swabs | Puritan | 867-WC NO GLUE | For making embryo manipulators |
Cre recombinase | New England Biolabs | M0298M | |
Digital dry bath | Genemate | 490016-616 | Used to store LMA at 40°C |
Epifluorescence dissection scope | |||
Glass capillary tubes | World Precision Instruments | TW100F-4 | |
Incubator | Forma Scientific | 3158 | To maintain embryos at 28°C |
Injection plate molds | Adaptive Science Tools | TU-1 | |
Isotemp water bath | Fisher Scientific | 2320 | For heat shocking embryos |
KCl | AMRESCO | 0395 | For E3 and for DNA solution for injections |
Laser-scanning confocal microscope | Zeiss | LSM710 | |
LE agarose | Genemate | E3120 | To create agarose injection plates |
Low-melt agarose (LMA) | AMRESCO | J234 | |
Mating tanks | Aquaneering, Inc. | ZHCT100 | |
Methylene blue | Sigma | M9140 | For E3 |
MgSO4 | Sigma | 9397 | For E3 |
Micromanipulator | World Precision Instruments | M3301 | |
Micropipette Puller | Sutter Instrument Co. | P-97 | |
MS-222 Tricaine-S | Western Chemical, Inc. | Stock made at 4 mg/mL in reverse osmosis (RO) water, then added dropwise to E3 to final concentration of 0.2 mM to anesthetize embryos | |
NaCl | J.T. Baker | 4058-01 | For E3 |
Petri dishes (90 mm, 60 mm) | Genesee Scientific | 32-107G | To house embryos and create imaging chamber (60 mm) |
Phenol red | Sigma | P0290 | |
Soft stitch ring markers | Clover Needlecraft, Inc. | 354 | For creating imaging chamber with Petri dish |
Super glue (Ultra gel control) | Loctite | 1363589 | For making embryo manipulators |
Syringe needles | Beckton Dickinson | BD329412 | For dechorionating embryos |