In vivo Imaging ist ein leistungsfähiges Werkzeug, das verwendet werden kann, um die zellulären Mechanismen zugrunde liegenden Entwicklung des Nervensystems zu untersuchen. Hier beschreiben wir eine Technik zur Verwendung von Zeitraffer-Konfokalmikroskopie, um eine große Anzahl von mehrfarbigen Brainbow-markierten Zellen in Echtzeit innerhalb des sich entwickelnden Zebrafischnervensystems zu visualisieren.
Die Entwicklung des Wirbeltiernervensystems erfordert eine präzise Koordination komplexer zellulärer Verhaltensweisen und Wechselwirkungen. Der Einsatz hochauflösender in vivo-Bildgebungstechniken kann ein klares Fenster in diese Prozesse im lebenden Organismus geben. Zum Beispiel können zellteilungsmittelteilungende Zellen und ihre Nachkommen in Echtzeit verfolgt werden, wenn sich das Nervensystem bildet. In den letzten Jahren haben technische Fortschritte in multicolor-Techniken die Arten von Fragen erweitert, die untersucht werden können. Der mehrfarbige Brainbow-Ansatz kann nicht nur verwendet werden, um zwischen gleichartigen Zellen zu unterscheiden, sondern auch mehrere verschiedene Klone verwandter Zellen, die jeweils aus einer Vorläuferzelle stammen, zu kodieren. Dies ermöglicht eine Multiplex-Linienanalyse vieler verschiedener Klone und deren Verhalten gleichzeitig während der Entwicklung. Hier beschreiben wir eine Technik zur Verwendung von Zeitraffer-Konfokalmikroskopie, um eine große Anzahl von mehrfarbigen Brainbow-markierten Zellen in Echtzeit innerhalb des sich entwickelnden Zebrafischnervensystems zu visualisieren. Dies ist besonders nützlich für die Verfolgung zellulärer Wechselwirkungen zwischen ähnlichen Zellen, die mit traditionellen, von Einem Promoter angetriebenen Farben nur schwer differenziell zu kennzeichnen sind. Unser Ansatz kann verwendet werden, um Linienbeziehungen zwischen mehreren verschiedenen Klonen gleichzeitig zu verfolgen. Die großen Datensätze, die mit dieser Technik generiert werden, liefern umfangreiche Informationen, die quantitativ über genetische oder pharmakologische Manipulationen hinweg verglichen werden können. Letztlich können die generierten Ergebnisse helfen, systematische Fragen zu beantworten, wie sich das Nervensystem entwickelt.
In den frühen Entwicklungsphasen teilen sich Pools spezialisierter Vorläuferzellen wiederholt in proliferativeZonen und produzieren verschiedene Arrays von Tochterzellen. Die Zellen, die während dieser Entwicklungsperiode geboren werden, werden sich dann differenzieren und reisen, um die entstehenden Organe zu bilden. Im Nervensystem führen Vorläufer wie radiale Glia zu unreifen Neuronen in ventrikulären Zonen. Wenn Neuronen von Ventrikeln wegwandern und reifen, bildet das expandierende Gewebe schließlich die hochkomplexen Strukturen des Gehirns1,2,3,4,5,6. Die Koordination zwischen Derliganundierung und Differenzierung und Migration von Neuronen wird die endgültige Größe, Form und damit Funktion des Gehirns bestimmen, direkt beeinflussenverhalten7,8,9,10. Während eine strenge Kontrolle über diese Prozesse eindeutig entscheidend für die normale Gehirnentwicklung ist, sind die globalen Mechanismen, die diese Dynamik regulieren, nicht gut verstanden. Hier beschreiben wir ein Werkzeug, um die Entwicklung des Nervensystems mit einer zellulären Auflösung zu untersuchen, so dass Forscher Progenitorzellen und Neuronen in vivo im sich entwickelnden Zebrafischhirn mit Brainbow visualisieren und ihr Verhalten im Laufe der Zeit über die Zeitraffer-Konfokalmikroskopie11verfolgen können. Der Ansatz kann auch angepasst werden, um andere Teile des sich entwickelnden Embryos zu visualisieren.
Um zellenimimim entwickelnden Zebrafischhirn zu beobachten und zu unterscheiden, haben wir die Brainbow-Zellbeschriftungstechnik11angepasst. Brainbow verwendet die zufällig ermittelte, kombinatorische Expression von drei verschiedenen fluoreszierenden Proteinen (FPs), um eine Population von Zellen zu kennzeichnen. Während die Standardexpression für brainbow Expression die rote FP dTomato ist, führt die Rekombination durch das Enzym Cre recombinase zur Expression von mCerulean (Cyan fluoreszierendes Protein, CFP) oder gelbem fluoreszierendem Protein (YFP)12,13. Die kombinierte Menge jedes FP, die in einer Zelle ausgedrückt wird, verleiht ihm einen einzigartigen Farbton, der eine klare visuelle Unterscheidung von benachbarten Zellen ermöglicht. Wenn sich eine Vorläuferzelle teilt, erbt jede Tochterzelle die Farbe von ihrer Mutterzelle, erzeugt farbcodierte Klone und ermöglicht es Forschern, die Zelllinie11,14nachzuverfolgen. Während ursprünglich verwendet, um neuronale Schaltkreise bei Mäusen12zu analysieren, Brainbow wurde seitdem in einer Vielzahl von Modellorganismen exprimiert, einschließlich Zebrafisch15.
Unsere Technik baut auf früheren mehrfarbigen Etikettierungs- und Bildgebungsmethoden auf, um mehrere farbcodierte Klone im Laufe der Zeit direkt in lebenden Zebrafischen abzubilden. Aufgrund ihrer optischen Transparenz als Embryonen eignen sich Zebrafische gut für bildgebende Experimente16, und frühere Studien haben Brainbow in Zebrafischen verwendet, um eine Vielzahl von Geweben zu studieren, einschließlich des Nervensystems11,15,17,18,19,20,21,22,23,24,25, 26,27. Die Fähigkeit, sich direkt in den lebenden Organismus einbilden zu können, zusammen mit ihrer schnellen Ex-Utero-Entwicklung, machen Zebrafische zu einem wertvollen Modell der Wirbeltierentwicklung. Im Gegensatz zum Säugetierhirn ist die gesamte proliferative Zone des Zebrafisch-Hinterhirns leicht für die Bildgebung ohne Störung seiner endogeneUmgebung6 verfügbar. Dies ermöglicht Experimente im lebenden Organismus, anstatt in vitro oder festen Gewebepräparaten. Im Gegensatz zu festen bildgebenden Experimenten ermöglichen In-vivo-Studien ein Längsdesign, das stundenlange Datenergebnisse erzeugt, die auf Muster analysiert werden können, wodurch die Wahrscheinlichkeit erhöht wird, relativ seltene Ereignisse zu beobachten. Je nach Geschwindigkeit und Länge der Ereignisse von Interesse können die Forscher kurze (1-2 h) oder lange (bis zu 16 h) Zeitraffer-Bildgebungsexperimente durchführen. Durch die Verwendung des Zebrafisch-Wärmeschockpromotors 70 (hsp70, hsp) kann der Brainbow-Ausdruck zeitlich gesteuert werden28,29. Darüber hinaus eignet sich der von diesem Promotor induzierte Mosaikausdruck gut zum Etikettieren und Verfolgen vieler Klone11.
Die Fähigkeit, mehrere Klone im lebenden Gehirn visuell zu identifizieren, ist ein Vorteil dieser Methode. Wichtige frühere Studien, die die Rolle von Klonen in der Entwicklung des Nervensystems untersuchten, nutzten retrovirale Vektoren, um eine einzelne Vorläuferzelle und ihre Nachkommen mit einem einzigen FP oder einem anderen leicht visualisierten Protein zu kennzeichnen. Eine solche Kennzeichnung ermöglicht es Forschern, einen einzelnen Klon im Laufe der Zeit zu beobachten, entweder in vitro oder in vivo2,30,31,32,33,34,35,36,37,38. Im Gegensatz zu Methoden, um das Verhalten von Zellen innerhalb eines Klons zu verfolgen, ermöglichen die unterschiedlichen Farben von Brainbow forschern, die Dynamik zwischen Klonen zu beobachten. Darüber hinaus werden durch die Verwendung von Brainbow, um viele Klone im Gehirn zu kennzeichnen, zusätzliche Daten über das klonale Verhalten im Verhältnis zu Techniken gesammelt, die einen einzelnen Klon11kennzeichnen. Wichtig ist, dass die hier beschriebenen Ansätze erweitert werden können, um Entwicklungsvergleiche zwischen Fischen zu erzeugen, die unterschiedliche genetischen oder pharmakologischen Manipulationen unterzogen wurden18. Insgesamt machen diese Vorteile die Zeitraffer-in-vivo-Konfokalbildgebung von Brainbow-exprimierenden Zebrafischen ideal für Forscher, die die Entwicklung des Wirbeltiernervensystems erforschen, insbesondere für diejenigen, die an der Rolle von Klonen interessiert sind.
Dieses Protokoll beschreibt eine Methode zur Visualisierung von Klonen von Vorläuferzellen und Neuronen im sich entwickelnden Zebrafisch-Hindbrain und folgt ihnen in vivo mit Brainbow und Zeitraffer-Konfokalmikroskopie11. Der große Vorteil dieses Protokolls im Vergleich zu In-vitro- oder Ex-vivo-Studien ist die Fähigkeit, die proliferative Zone des Wirbeltierhirns in seinem natürlichen Milieu im Laufe der Zeit direkt zu beobachten. Diese Technik baut auf früheren Studien auf, die einen einzel…
The authors have nothing to disclose.
Wir danken Y. A. Pan, J. Livet und Z. Tobias für ihre technischen und intellektuellen Beiträge. Diese Arbeit wurde von der National Science Foundation (Preis 1553764) und dem M.J. Murdock Charitable Trust unterstützt.
1.5mL transfer pipet | Globe Scientific, Inc. | 134020 | |
1-phenyl-2-thiourea (PTU) | Alfa Aesar | L06690 | Diluted to 0.2 mM in E3 to prevent embryo pigmentation |
50ml conical tubes | Corning | 352070 | For heat shocking embryos |
6 lb nylon fishing line | SecureLine | NMT250 | For making embryo manipulators |
7.5mL transfer pipet | Globe Scientific, Inc. | 135010 | |
CaCl2 | Sigma | C3881 | For E3 |
Cotton swabs | Puritan | 867-WC NO GLUE | For making embryo manipulators |
Cre recombinase | New England Biolabs | M0298M | |
Digital dry bath | Genemate | 490016-616 | Used to store LMA at 40°C |
Epifluorescence dissection scope | |||
Glass capillary tubes | World Precision Instruments | TW100F-4 | |
Incubator | Forma Scientific | 3158 | To maintain embryos at 28°C |
Injection plate molds | Adaptive Science Tools | TU-1 | |
Isotemp water bath | Fisher Scientific | 2320 | For heat shocking embryos |
KCl | AMRESCO | 0395 | For E3 and for DNA solution for injections |
Laser-scanning confocal microscope | Zeiss | LSM710 | |
LE agarose | Genemate | E3120 | To create agarose injection plates |
Low-melt agarose (LMA) | AMRESCO | J234 | |
Mating tanks | Aquaneering, Inc. | ZHCT100 | |
Methylene blue | Sigma | M9140 | For E3 |
MgSO4 | Sigma | 9397 | For E3 |
Micromanipulator | World Precision Instruments | M3301 | |
Micropipette Puller | Sutter Instrument Co. | P-97 | |
MS-222 Tricaine-S | Western Chemical, Inc. | Stock made at 4 mg/mL in reverse osmosis (RO) water, then added dropwise to E3 to final concentration of 0.2 mM to anesthetize embryos | |
NaCl | J.T. Baker | 4058-01 | For E3 |
Petri dishes (90 mm, 60 mm) | Genesee Scientific | 32-107G | To house embryos and create imaging chamber (60 mm) |
Phenol red | Sigma | P0290 | |
Soft stitch ring markers | Clover Needlecraft, Inc. | 354 | For creating imaging chamber with Petri dish |
Super glue (Ultra gel control) | Loctite | 1363589 | For making embryo manipulators |
Syringe needles | Beckton Dickinson | BD329412 | For dechorionating embryos |