ويصف البروتوكول طريقه للتنبؤ بتركيز الأثير الثنائي البلفنلنسلف اثناء إنتاج الايثر باستخدام الاشعه تحت الحمراء شبه الطيفية والانحدار الجزئي الأقل للمربعات. لوصف العملية بشكل أكثر وضوحا وتماما ، ويستخدم مثالا علي التنبؤ بتركيز o-كريول اثناء إنتاج بلفنلنسلف لتوضيح الخطوات.
وعلي عكس متغيرات العملية المجهرية ، يوفر الطيف الطيفي القريب من الاشعه تحت الحمراء معلومات العملية علي المستوي الجزيئي ويمكن ان يحسن بشكل كبير من التنبؤ بالمكونات في العمليات الصناعية. القدرة علي تسجيل الأطياف للعينات الصلبة والسائلة دون اي المعالجة هو مفيد ويستخدم علي نطاق واسع الأسلوب. ومع ذلك ، فان مساوئ تحليل البيانات الطيفية العالية الابعاد القريبة من الاشعه تحت الحمراء تشمل المعلومات الزائدة والخطية المتعددة للبيانات الطيفية. التالي ، نقترح استخدام طريقه الانحدار الجزئي الأقل المربعات ، والتي تم استخدامها تقليديا لتقليل ابعاد البيانات وأزاله العلاقة الخطية المتداخلة بين الميزات الاصليه. نحن ننفذ طريقه للتنبؤ تركيز س-كريكول خلال إنتاج الأثير بلفنلنسلف. يقدم النهج المقترح المزايا التالية علي أساليب التنبؤ بانحدار المكونات: 1) الانحدار الجزئي الأقل المربعات يحل المشكلة الخطية المتعددة للمتغيرات المستقلة ويتجنب بشكل فعال التركيب الزائد ، والذي يحدث في تحليل الانحدار نظرا للعلاقة العالية بين المتغيرات المستقلة ؛ 2) ان استخدام الطيف القريب من الاشعه تحت الحمراء يؤدي إلى دقه عاليه لأنه طريقه غير مدمره وغير ملوثه للحصول علي المعلومات بالمقاييس المجهرية والجزيئية.
وقد حظي التحليل الطيفي للاشعه تحت الحمراء القريبة (نير) بقبول واسع كتكنولوجيا تحليليه حديثه سريعة وفعاله وغير مدمره وغير ملوثه ؛ وقد استخدمت هذه الطريقة خلال السنوات العديدة الماضية للكشف عن جوده المنتج والتحليل وقياس المكونات الكيميائية في العمليات الصناعية. التخصص الأكثر اهميه للأسلوب هو قدرته علي تسجيل الأطياف للعينات الصلبة والسائلة دون اي تجهيز مسبق ، مما يجعل nirs مناسبه خاصه للكشف المباشر والسريع وتحليل المنتجات الطبيعية والاصطناعية1،2. وخلافا لأجهزه الاستشعار التقليدية التي تقيس متغيرات العملية (مثل درجه الحرارة ، والضغط ، ومستوي السائل ، وما إلى ذلك) علي نطاق المجهرية وتعاني حتما من الضوضاء الخارجية وتداخل الخلفية ، يكتشف NIRS المعلومات الهيكلية للتكوين الكيميائي في المقاييس المجهرية والجزيئية. التالي ، يمكن قياس المعلومات الاساسيه بشكل أكثر دقه وفعالية من الطرق الأخرى3،4.
وتستخدم علي نطاق واسع الأثير polyphenyl ، باعتبارها واحده من البلاستيك الهندسية ، وذلك بسبب مقاومته للحرارة ، مثبطات اللهب ، والعزل ، والخصائص الكهربائية ، والاستقرار الابعاد ، ومقاومه تاثير ، زحف المقاومة ، والقوه الميكانيكية وغيرها من الخصائص5. الأهم من ذلك ، هو غير سامه وغير مؤذيه بالمقارنة مع غيرها من اللدائن الهندسية. في الوقت الحاضر ، 2 ، الزايلينول هي واحده من المواد الخام الاساسيه لتوليف الأثير بلفنلنسلف ، وعاده ما يتم اعداده عن طريق تحفيز الالكله من الفينول مع طريقه الميثانول6. هناك نوعان من المنتجات الرئيسية لهذه الطريقة التحضير ، o-كريسول و 2 ، 6-الزايلينول. بعد سلسله من خطوات الانفصال والاستخلاص ، يستخدم 2 ، 6 الزايلينول لإنتاج الأثير بلفنلنسلف. ومع ذلك ، تبقي كميات ضئيله من o-كريسول في 2, 6-الزايلينول. O-كريكول لا تشارك في توليف الأثير بلفنلنسلف وسوف تبقي في المنتج الأثير بلفنلنسلف ، مما ادي إلى انخفاض في جوده المنتج أو حتى دون المستوي. في الوقت الحاضر ، لا تزال معظم الشركات تحليل التراكيب من الخلائط العضوية المعقدة مثل السائل المرحلة ميثيل الأثير المنتجات التي تحتوي علي الشوائب (علي سبيل المثال ، o-كريكول) عن طريق تحليل الفصل الفيزيائي أو الكيميائي مثل اللوني7،8. مبدا فصل اللوني هو استخدام خليط من التراكيب في المرحلة الثابتة ومرحله التدفق في انحلال ، تحليل ، الامتزاز ، الامتصاص أو غيرها من التقارب من الاختلافات الطفيفة في الأداء. عندما تتحرك مرحلتين بالنسبة لبعضها البعض ، يتم فصل التراكيب بالإجراءات المذكورة أعلاه مرارا وتكرارا في مرحلتين. اعتمادا علي الكائن ، فانه عاده ما يستغرق بضع دقائق إلى بضع عشرات من الدقائق لإكمال عمليه فصل المواد المعقدة. ويمكن ان نري ان كفاءه القياس منخفضه.
في الأيام الحاضرة ، وقياس جوده المنتج وتكنولوجيا التحكم المتقدمة علي أساس هذا التحليل لصناعه المواد الكيميائية الحديثة عمليه غرامه هو الاتجاه الرئيسي لزيادة تحسين جوده المنتج. في صناعه عمليه إنتاج الأثير بوليف# ينيل ، في الوقت الحقيقي قياس المحتوي س-كريسول في المنتج بلفنلنسلف الأثير هو من اهميه كبيره للتنمية. تحليل الكروماتوغرافي لا يمكن بوضوح تلبيه متطلبات تكنولوجيا التحكم المتقدمة لقياس الوقت الحقيقي للمواد والتغذية المرتدة اشاره. ولذلك ، فاننا نقترح الانحدار الجزئي المربعات الأقل (PLSR) الأسلوب لإنشاء نموذج خطي بين البيانات NIRS وتركيز س-كريكول ، والتي تحقق قياس الإنترنت من المحتوي س-كريسول في المنتج السائل بلفنلنسلف الأثير من مخرج .
وتقوم المعالجة المسبقة لهذه العمليات بأهم دور قبل النمذجة الاحصائيه المتعددة المتغيرات. وافينومبيرس NIRS في طيف نير واحجام الجسيمات من العينات البيولوجية قابله للمقارنة ، لذلك فمن المعروف عن اثار مبعثر غير متوقعه لها تاثير علي أطياف العينة المسجلة. من خلال أداء الأساليب المناسبة قبل المعالجة ، وهذه الآثار من السهل القضاء عليها إلى حد كبير9. وتصنف تقنيات المعالجة المسبقة الأكثر استخداما في NIRS علي انها التصحيح المبعثر وأساليب المشتقات الطيفية. وتشمل المجموعة الاولي من الأساليب تصحيح مبعثر المضاعفة ، detrending ، التحولات متغير العادية القياسية ، والتطبيع. وتشمل أساليب الاشتقاق الطيفي استخدام المشتقات الاولي والثانية.
قبل وضع نموذج الانحدار الكمي ، من المهم أزاله الاختلافات المبعثرة غير المنتظمة من بيانات NIRS لان لها تاثيرا كبيرا علي دقه النموذج التنبؤي ، وتعقيده والتشعب. يجب ان يعتمد اختيار طريقه المعالجة المسبقة المناسبة دائما علي خطوه النمذجة اللاحقة. هنا ، إذا كانت مجموعه البيانات الطيفية نير لا تتبع قانون لامبرت البيره ، ثم عوامل أخرى تميل إلى تعويض عن السلوك غير المثالي للتنبؤ للمكونات المتوقعة. والعيب في وجود هذه العوامل التي لا لزوم لها يؤدي إلى زيادة تعقيد النموذج ، حتى علي الأرجح ، إلى انخفاض في المتانة. التالي ، فان تطبيق المشتقات الطيفية والتطبيع التقليدي للبيانات الطيفية يشكلان جزءا أساسيا من الأسلوب.
بعد المعالجة المسبقة الطيفية ، يتم الحصول علي بيانات NIRS ذات نسبه عاليه من الاشاره إلى الضوضاء وتداخل الخلفية المنخفضة. يوفر تحليل NIRS الحديثة الاستحواذ السريع علي كميات كبيره من الامتصاص علي مدي الطيفية المناسبة. ثم يتم التنبؤ بالتركيب الكيميائي للعينه عن طريق استخراج المتغيرات ذات الصلة باستخدام المعلومات الواردة في المنحني الطيفي. وبصفه عامه ، يتم الجمع بين الدراسات التحليلية المتعددة وأساليب التحليل المتنوعة للتحليلات النوعية أو الكمية10. ويشيع استخدام تحليل الانحدار الخطي متعدد المتغيرات (MLR) لتطوير وتعدين العلاقة الرياضية بين البيانات والمكونات في العمليات الصناعية وقد استخدمت علي نطاق واسع في تحليل NIRS.
ومع ذلك ، هناك مشكلتين أساسيه عند تنفيذ MLR للبيانات NIRS المعالجة المسبقة. مشكله واحده هي التكرار المتغير. الابعاد العالية للبيانات NIRS غالبا ما يجعل التنبؤ متغير تابع غير موثوق به لأنه يتم تضمين المتغيرات التي ليس لها ارتباط مع المكونات. وتقلل هذه المتغيرات الزائدة من كفاءه المعلومات المتعلقة بالبيانات الطيفية وتؤثر علي دقه النموذج. من أجل القضاء علي التكرار المتغير ، من الضروري تطوير وتعظيم الارتباط بين بيانات NIRS والمكونات المتوقعة.
مشكله أخرى هي مساله تعدد الخطية في بيانات NIRS. واحد الافتراضات الهامه لنماذج الانحدار الخطي المتعددة هو انه لا توجد علاقة خطيه بين اي من المتغيرات التفسيرية لنموذج الانحدار. إذا كانت هذه العلاقة الخطية موجودة ، فانه يثبت ان هناك تعدد الخطية في نموذج الانحدار الخطي ويتم انتهاك الافتراض. في تراجع خطيه متعددة ، مثل انحدار مربعات الأقل العادية (OLSR) ، الارتباطات المتعددة بين المتغيرات تؤثر علي تقدير المعلمة ، وزيادة خطا النموذج ، وتؤثر علي استقرار النموذج. ولأزاله الترابط المتعدد الخطي بين البيانات الطيفية لجرد المعلومات النيرة ، نستخدم أساليب الاختيار المتغيرة التي تزيد من التنوع المتاصل في العينات.
هنا ، نقترح استخدام plsr ، وهو تعميم الانحدار الخطي متعددة التي تم استخدامها علي نطاق واسع في مجال nirs11،12. يدمج PLSR الوظائف الاساسيه لل MLR ، وتحليل الارتباط المتعارف عليه (CCA) ، وتحليل المكونات الرئيسية (PCA) ويجمع بين تحليل التنبؤ مع تحليل غير نموذجي لدلاله البيانات. ويمكن تقسيم PLSR إلى جزاين. يحدد الجزء الأول مكونات المتغيرات المميزة والمكونات المتوقعة بتحليل جزئي لأقل المربعات (PLS). الثابتة والمتنقلة يزيد من التغير المتاصل في المكونات الرئيسية بجعل التباين المختلط للمكونات الرئيسية والمكونات المتوقعة كبيره قدر الإمكان عند استخراج المكونات الرئيسية. بعد ذلك ، يتم تاسيس نموذج OLSR من تركيز o-كريكول للمكونات الرئيسية المختارة. PLSR هو مناسبه لتحليل البيانات الصاخبة مع العديد من المتغيرات المستقلة التي هي متداخلة بشده ومترابطة للغاية والنمذجة في وقت واحد من عده متغيرات الاستجابة. أيضا ، plsr مقتطفات من المعلومات الفعالة لأطياف العينة ، يتغلب علي مشكله الخطية المتعددة ، وله مزايا الاستقرار القوي وارتفاع دقه التنبؤ13،14.
يصف البروتوكول التالي عمليه استخدام نموذج PLSR لقياس التركيز الذي يستخدم البيانات الطيفية ل “نير”. يتم تقييم موثوقيه ودقه النموذج كميا باستخدام معامل التحديد () ، ومعامل ارتباط التنبؤ () وخطا التنبؤ المربع المتوسط للتحقق من الصحة التبادلية (mspecv). وعلاوة علي ذلك ، ولإظهار مزايا PLSR بشكل حدسي ، فان مؤشرات التقييم تصور في العديد من المؤامرات لاجراء تحليل نوعي. وأخيرا ، تعرض مؤشرات تقييم التجربة في شكل جدول لتوضيح مدي موثوقيه ودقه نموذج PLSR.
يصف هذا البروتوكول عمليه تنفيذ PLSR علي قياس تركيز س-كريكول المتبقية في المنتج السائل من بلفنلنسلف الأثير مع NIRS.
والخطوتان الحاسمتين في هذه العملية هما المعالجة المسبقة للبيانات الطيفية الاصليه لبيانات الجرد العامة والمتغيرات المختارة للبيانات الطيفية العالية الابعاد.
<p…The authors have nothing to disclose.
وقد حظي هذا العمل بدعم المؤسسة الوطنية للعلوم الطبيعية في الصين (المنحة رقم 61722306 و 61473137) والبرنامج الوطني للانضباط من الدرجة الاولي في مجال تكنولوجيا وهندسه الصناعات الخفيفة (LITE2018-025).
MPA II Multi Purpose FT-NIR Analyzer | Bruker | 1 | |
Fiber Optic Probes(Liquid phase) | Bruker | 1 | |
Liquid chromatography analyzer | / | 1 | |
Laboratory Equipment and Supplies(e.g. test tube, etc.) | / | ||
MATLAB | MathWork | 1 | |
OPUS | Bruker | 1 | |
Principal computer | DELL | 1 | |
The Unscrambler | CAMO | 1 |