Summary

Prüfung für anorganisches Polyphosphat in Bakterien

Published: January 21, 2019
doi:

Summary

Wir beschreiben eine einfache Methode für schnelle Quantifizierung von anorganischen Polyphosphat in verschiedenen Bakterien, einschließlich gramnegative und grampositive mykobakteriellen Arten.

Abstract

Anorganisches Polyphosphat (Polypen) ist eine biologische Polymer in den Zellen aus allen Bereichen des Lebens gefunden und ist erforderlich für die Virulenz und die Stress-Reaktion in vielen Bakterien. Es gibt eine Vielzahl von Methoden zur Quantifizierung PolyP in biologischen Materialien, von die viele arbeitsintensive oder unsensibel, ihre Nützlichkeit zu begrenzen sind. Wir stellen Ihnen hier eine optimierte Methode zur Quantifizierung der PolyP in Bakterien, über eine Kieselsäure Membran Spalte Extraktion optimiert für schnelle Verarbeitung von mehreren Proben, Verdauung der PolyP mit dem PolyP-spezifische Exopolyphosphatase ScPPX und Erkennung von der daraus resultierende freie Phosphat mit einem sensiblen Ascorbinsäure-basierte farbmetrischen Assay. Dieses Verfahren ist einfach, kostengünstig und ermöglicht zuverlässige PolyP Quantifizierung in unterschiedlichen Bakterienarten. Wir präsentieren Ihnen repräsentative PolyP Quantifizierung von Gram-negativen Bakteriums (Escherichia coli), grampositive Milchsäure-Bakterien (Lactobacillus Reuteri) und der mykobakteriellen Spezies (Mycobacterium Smegmatis). Wir sind auch ein einfaches Protokoll für Nickel Affinitätsreinigung mg-Mengen von ScPPX, die derzeit nicht im Handel erhältlich.

Introduction

Anorganisches Polyphosphat (Polypen) ist eine lineare Biopolymer Phosphoanhydride verknüpft Phosphat-Einheiten, die in allen Bereichen des Lebens1,2,3gefunden wird. In verschiedenen Bakterien ist PolyP essentiell für Stress-Reaktion, Beweglichkeit, Biofilmbildung, Zellzyklus-Kontrolle, Antibiotika-Resistenz und Virulenz4,5,6,7,8 ,9,10,11. Studien der PolyP Stoffwechsel in Bakterien haben daher das Potenzial, grundlegende Einblicke in die Fähigkeit der Bakterien verursachen Krankheiten und gedeihen in unterschiedlichen Umgebungen. In vielen Fällen sind jedoch die verfügbaren Methoden zur Quantifizierung PolyP in Bakterienzellen ein limitierender Faktor in diesen Studien.

Es gibt mehrere Methoden, die derzeit zur Messung der PolyP Ebenen in biologischem Material. Diese Methoden beinhalten in der Regel zwei verschiedene Schritte: Extrahieren von Polypen und Quantifizierung der PolyP präsentieren in diesen Extrakten. Die aktuelle Gold-Standard-Methode, entwickelt für die Hefe Saccharomyces Cerevisiae von Bru und Kollegen12, Extrakte Polypen zusammen mit DNA und RNA mit Phenol und Chloroform, gefolgt von Ethanol Niederschlag, Behandlung mit Deoxyribonuclease (DNase) und Ribonuklease (RNase) und Verdauung der daraus resultierenden gereinigten Polypen mit S. Cerevisiae PolyP-abbauenden Enzyms Exopolyphosphatase (ScPPX)13 bis freie Phosphat, nachgeben, die dann quantifiziert wird mit einem Malachit Grün-basierte kolorimetrischen Probe. Dieses Verfahren ist sehr quantitative aber arbeitsintensiv, Begrenzung der Anzahl der Proben, die in einem einzigen Experiment verarbeitet werden können, und ist nicht optimiert für bakterielle Proben. Andere haben berichtet, Extrahieren von PolyP aus einer Vielzahl von Zellen und Geweben mit Kieselsäure Perlen (“Glassmilk”) oder Kieselsäure Membran Spalten6,14,15,16,17, 18. Diese Methoden extrahieren nicht effizient kurzkettigen PolyP (weniger als 60 Phosphat Einheiten)12,14,15, zwar von weniger Belang für Bakterien, die in der Regel gedacht werden, um in erster Linie zu synthetisieren ist langkettige PolyP3. Ältere Methoden der PolyP Extraktion mit starken Säuren19,20 sind nicht mehr weit verbreitet, da Polypen unter sauren Bedingungen12instabil ist.

Es gibt auch eine Vielzahl von gemeldeten Methoden zur Quantifizierung PolyP. Zu den häufigsten ist 4 ‘, 6-Diamidino-2-Phenylindole (DAPI), ein Fluoreszenzfarbstoff mehr normalerweise verwendet, um DNA zu beflecken. DAPI-PolyP komplexe haben unterschiedliche Fluoreszenz Emission und Erregung Maxima als DAPI-DNA-komplexen21,22, aber es gibt erheblichen Störungen von anderen zellulären Komponenten, einschließlich RNA, Nukleotide und Inosit Phosphate12,15,16,23, Verringerung der Spezifität und Sensitivität der PolyP Messungen mit dieser Methode. Alternativ können Polypen und Adenosin-diphosphat (ADP) in Adenosintriphosphat (ATP) mit gereinigtem Escherichia coli umgewandelt werden Polypen Kinase (PPK) und die daraus resultierende ATP quantifiziert mit Luciferase14,17 ,18. Dies erlaubt den Nachweis sehr kleiner Mengen von Polypen, aber erfordert zwei enzymatische Reaktionsschritte und sowohl Luciferin und sehr reine ADP, die teure Reagenzien sind. ScPPX, die speziell Übersichten PolyP in freie Phosphat6,12,13,24, die mit einfacheren Methoden, aber ScPPX erkannt werden kann durch DNA und RNA12gehemmt wird, Meißel-DNase und RNase-Behandlung von Polypen-haltigen Extrakten. Weder die PPK als auch die ScPPX sind im Handel erhältlich, und PPK Reinigung ist relativ komplex25,26.

PolyP in Zelle Lysates oder Extrakte kann auch visualisiert werden auf Polyacrylamid-Gele von DAPI negative Färbung27,28,29,30, eine Methode, die erlaubt die Beurteilung der Kettenlänge, sondern ist niedrig-Durchsatz und schlecht quantitative.

Wir berichten nun einen schnell, preiswert, Medium-Durchsatz PolyP-Assay, der schnelle Quantifizierung der PolyP Ebenen in unterschiedlichen Bakterienarten ermöglicht. Diese Methode beginnt mit der Lyse der Bakterienzellen bei 95 ° C in 4 M Guanidin erfolgt (GITC)14 um zelluläre Phosphatasen, gefolgt von einer Kieselsäure Membran Spalte Extraktion optimiert für schnelle Bearbeitung mehrerer Proben zu inaktivieren. Der daraus resultierende PolyP-haltiger Extrakt wird dann mit einem großen Überschuss von ScPPX, wodurch die Notwendigkeit für DNase und RNase-Behandlung verdaut. Wir sind ein Protokoll für einfache Nickel Affinitätsreinigung mg-Mengen von ScPPX. PolyP abgeleitet frei Phosphat ist schließlich mit einem einfach, sensible, Ascorbinsäure-basierte kolorimetrischen Probe24 quantifiziert und normiert auf zelluläre Gesamtprotein. Diese Methode vereinfacht die Messung der PolyP in Bakterienzellen, und wir zeigen seine Verwendung mit repräsentativer Arten von Gram-negativen Bakterien, grampositive Bakterien und Mykobakterien.

Protocol

1. reinigen Hefe Exopolyphosphatase (ScPPX) Die E. Coli Protein Überexpression Belastung BL21(DE3)31 mit Plasmid pScPPX26 durch Elektroporation32 oder chemische Umwandlung33zu verwandeln. 1 L Lysogeny Brühe (LB), enthält 100 µg mL-1 Ampicillin in einem 2 L unbaffled Kolben mit einer einzigen Kolonie von BL21(DE3) mit pScPPX2 zu impfen und Inkubation über Nacht bei 37 ° C ohne schü…

Representative Results

In vereinfachter Form in Abbildung 1sind die wichtigsten Schritte des Protokolls diagrammed. Veranschaulichen die Verwendung dieses Protokolls mit Gram-negativen Bakterien, Wildtyp E. Coli war MG165539 gewachsen, Mid Log-Phase im Reich LB-Medium bei 37 ° C mit schütteln (200 u/min), dann gespült und für weitere 2 h in inkubiert Morpholinopropanesulfonate-gepuffer…

Discussion

Das hier beschriebene Protokoll vereinfacht und beschleunigt die Quantifizierung der PolyP Ebenen in unterschiedlichen Bakterien mit einem typischen Satz von 24 Proben nehmen ca. 1,5 h vollständig verarbeiten. Dies ermöglicht eine schnelle Screening von Proben und Analyse der mutierten Bibliotheken und vereinfacht kinetische Experimente, die die Ansammlung von Polypen im Laufe der Zeit zu messen. Wir haben bewiesen, dass das Protokoll effektiv auf Vertreter der drei verschiedene Stämme funktioniert: Proteobakterien, F…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dieses Projekt wurde von der University of Alabama bei Birmingham Institut für Mikrobiologie Start Fonds und NIH Grant R35GM124590 (MJG) und NIH Grant R01AI121364 (FW) unterstützt.

Materials

E. coli BL21(DE3) Millipore Sigma 69450
plasmid pScPPX2 Addgene 112877 available to academic and other non-profit institutions
LB broth Fisher Scientific BP1427-2 E. coli growth medium
ampicillin Fisher Scientific BP176025
isopropyl β-D-1-thiogalactopyranoside (IPTG) Gold Biotechnology I2481C
HEPES buffer Gold Biotechnology H-400-1
potassium hydroxide (KOH) Fisher Scientific P250500 for adjusting the pH of HEPES-buffered solutions
sodium chloride (NaCl) Fisher Scientific S27110
imidazole Fisher Scientific O3196500
lysozyme Fisher Scientific AAJ6070106
magnesium chloride (MgCl2) Fisher Scientific BP214-500
Pierce Universal Nuclease Fisher Scientific PI88700 Benzonase (Sigma-Aldrich cat. # E1014) is an acceptable substitute
Model 120 Sonic Dismembrator Fisher Scientific FB-120 other cell lysis methods (e.g. French Press) can also be effective
5 mL HiTrap chelating HP column GE Life Sciences 17040901 any nickel-affinity chromatography column or resin could be substituted
nickel(II) sulfate hexahydrate Fisher Scientific AC415611000 for charging HiTrap column
0.8 µm pore size cellulose acetate syringe filters Fisher Scientific 09-302-168
Bradford reagent Bio-Rad 5000205
Tris buffer Fisher Scientific BP1525
Spectrum Spectra/Por 4 RC Dialysis Membrane Tubing 12,000 to 14,000 Dalton MWCO Fisher Scientific 08-667B other dialysis membranes with MWCO < 30,000 Da should also work
hydrochloric acid (HCl) Fisher Scientific A144-212 for adjusting the pH of Tris-buffered solutions
potassium chloride (KCl) Fisher Scientific P217500
glycerol Fisher Scientific BP2294
10x MOPS medium mixture Teknova M2101 E. coli growth medium
glucose Fisher Scientific D161
monobasic potassium phosphate (KH2PO4) Fisher Scientific BP362-500
dibasic potassium phosphate (K2HPO4) Fisher Scientific BP363-500
dehydrated yeast extract Fisher Scientific DF0886-17-0
tryptone Fisher Scientific BP1421-500
magnesium sulfate heptahydrate Fisher Scientific M63-50
manganese sulfate monohydrate Fisher Scientific M113-500
guanidine isothiocyanate Fisher Scientific BP221-250
bovine serum albumin (protease-free) Fisher Scientific BP9703100
clear flat bottom 96-well plates Sigma-Aldrich M0812-100EA any clear 96-well plate will work
Tecan M1000 Infinite plate reader Tecan, Inc. not applicable any plate reader capable of measuring absorbance at 595 and 882 nm will work
ethanol Fisher Scientific 04-355-451
silica membrane spin columns Epoch Life Science 1910-050/250
ethylenediaminetetraacetic acid (EDTA) Fisher Scientific BP120500
1.5 mL microfuge tubes Fisher Scientific NC9580154
ammonium acetate Fisher Scientific A637-500
antimony potassium tartrate Fisher Scientific AAA1088922
4 N sulfuric acid (H2SO4) Fisher Scientific SA818-500
ammonium heptamolybdate Fisher Scientific AAA1376630
ascorbic acid Fisher Scientific AC401471000

References

  1. Rao, N. N., Gomez-Garcia, M. R., Kornberg, A. Inorganic polyphosphate: essential for growth and survival. Annual Review of Biochemistry. 78, 605-647 (2009).
  2. Achbergerova, L., Nahalka, J. Polyphosphate–an ancient energy source and active metabolic regulator. Microbial Cell Factories. 10, 63 (2011).
  3. Kornberg, A., Rao, N. N., Ault-Riche, D. Inorganic polyphosphate: a molecule of many functions. Annual Review of Biochemistry. 68, 89-125 (1999).
  4. Albi, T., Serrano, A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World Journal of Microbiology and Biotechnology. 32 (2), 27 (2016).
  5. Gray, M. J., Jakob, U. Oxidative stress protection by polyphosphate–new roles for an old player. Current Opinion in Microbiology. 24, 1-6 (2015).
  6. Gray, M. J., et al. Polyphosphate is a primordial chaperone. Molecular Cell. 53 (5), 689-699 (2014).
  7. Racki, L. R., et al. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America. 114 (12), E2440-E2449 (2017).
  8. Rashid, M. H., et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America. 97 (17), 9636-9641 (2000).
  9. Candon, H. L., Allan, B. J., Fraley, C. D., Gaynor, E. C. Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. Journal of Bacteriology. 189 (22), 8099-8108 (2007).
  10. Richards, M. I., Michell, S. L., Oyston, P. C. An intracellularly inducible gene involved in virulence and polyphosphate production in Francisella. Journal of Medical Microbiology. 57 (Pt 10), 1183-1192 (2008).
  11. Singh, R., et al. Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. Journal of Bacteriology. 195 (12), 2839-2851 (2013).
  12. Bru, S., Jimenez, J., Canadell, D., Arino, J., Clotet, J. Improvement of biochemical methods of polyP quantification. Microbial Cell. 4 (1), 6-15 (2016).
  13. Wurst, H., Kornberg, A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. Journal of Biological Chemistry. 269 (15), 10996-11001 (1994).
  14. Ault-Riche, D., Fraley, C. D., Tzeng, C. M., Kornberg, A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. Journal of Bacteriology. 180 (7), 1841-1847 (1998).
  15. Lee, W. D., et al. Simple Silica Column-Based Method to Quantify Inorganic Polyphosphates in Cartilage and Other Tissues. Cartilage. , (2017).
  16. Martin, P., Van Mooy, B. A. Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference. Applied and Environmental Microbiology. 79 (1), 273-281 (2013).
  17. Cremers, C. M., et al. Polyphosphate: A Conserved Modifier of Amyloidogenic Processes. Molecular Cell. 63 (5), 768-780 (2016).
  18. Dahl, J. U., et al. The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nature Microbiology. 2, 16267 (2017).
  19. Kulaev, I. S., Vagabov, V. M., Kulakovskaya, T. V. Ch. 2. The Biochemistry of Inorganic Polyphosphates. , 15-35 (2004).
  20. Werner, T. P., Amrhein, N., Freimoser, F. M. Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Archives of Microbiology. 184 (2), 129-136 (2005).
  21. Aschar-Sobbi, R., et al. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. Journal of Fluorescence. 18 (5), 859-866 (2008).
  22. Kulakova, A. N., et al. Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environmental Science and Technology. 45 (18), 7799-7803 (2011).
  23. Kolozsvari, B., Parisi, F., Saiardi, A. Inositol phosphates induce DAPI fluorescence shift. Biochemical Journal. 460 (3), 377-385 (2014).
  24. Christ, J. J., Blank, L. M. Enzymatic quantification and length determination of polyphosphate down to a chain length of two. Analytical Biochemistry. 548, 82-90 (2018).
  25. Ahn, K., Kornberg, A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. Journal of Biological Chemistry. 265 (20), 11734-11739 (1990).
  26. Zhu, Y., Lee, S. S., Xu, W. Crystallization and characterization of polyphosphate kinase from Escherichia coli. Biochemical and Biophysical Research Communications. 305 (4), 997-1001 (2003).
  27. Smith, S. A., Morrissey, J. H. Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4′,6-diamidino-2-phenylindol. Electrophoresis. 28 (19), 3461-3465 (2007).
  28. Livermore, T. M., Chubb, J. R., Saiardi, A. Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America. 113 (4), 996-1001 (2016).
  29. Rudat, A. K., Pokhrel, A., Green, T. J., Gray, M. J. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. Journal of Bacteriology. 200 (6), e00697-e00617 (2018).
  30. Smith, S. A., Wang, Y., Morrissey, J. H. DNA ladders can be used to size polyphosphate resolved by polyacrylamide gel electrophoresis. Electrophoresis. , (2018).
  31. Studier, F. W., Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology. 189 (1), 113-130 (1986).
  32. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. Bacterial Transformation: Electroporation. , (2018).
  33. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. Bacterial Transformation: The Heat Shock Method. , (2018).
  34. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  35. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. Separating Protein with SDS-PAGE. , (2018).
  36. Mu, Q., Tavella, V. J., Luo, X. M. Role of Lactobacillus reuteri in Human Health and Diseases. Frontiers in Microbiology. 9, 757 (2018).
  37. Alcantara, C., Blasco, A., Zuniga, M., Monedero, V. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance. Applied and Environmental Microbiology. 80 (5), 1650-1659 (2014).
  38. Kulaev, I. S., Vagabov, V. M., Kulakovskaya, T. V. Ch. 1. The Biochemistry of Inorganic Polyphosphates. , 3-13 (2004).
  39. Blattner, F. R., et al. The complete genome sequence of Escherichia coli K-12. Science. 277 (5331), 1453-1462 (1997).
  40. Neidhardt, F. C., Bloch, P. L., Smith, D. F. Culture medium for enterobacteria. Journal of Bacteriology. 119 (3), 736-747 (1974).
  41. Akiyama, M., Crooke, E., Kornberg, A. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. Journal of Biological Chemistry. 267 (31), 22556-22561 (1992).
  42. Akiyama, M., Crooke, E., Kornberg, A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. Journal of Biological Chemistry. 268 (1), 633-639 (1993).
  43. Rao, N. N., Liu, S., Kornberg, A. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. Journal of Bacteriology. 180 (8), 2186-2193 (1998).
  44. van Pijkeren, J. P., Britton, R. A. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Research. 40 (10), e76 (2012).
  45. Zhang, H., Ishige, K., Kornberg, A. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 99 (26), 16678-16683 (2002).
  46. Sander, P., Meier, A., Bottger, E. C. rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Molecular Microbiology. 16 (5), 991-1000 (1995).
  47. Hartman, S., Bont, J. A. M. D., Balows, A. . The Prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, application. , 1215-1237 (1992).
  48. Winder, F. G., Denneny, J. M. The metabolism of inorganic polyphosphate in mycobacteria. Journal of General Microbiology. 17 (3), 573-585 (1957).
  49. Jankute, M., Cox, J. A., Harrison, J., Besra, G. S. Assembly of the Mycobacterial Cell Wall. Annual Review of Microbiology. 69, 405-423 (2015).
  50. Carter, S. G., Karl, D. W. Inorganic phosphate assay with malachite green: an improvement and evaluation. Journal of Biochemical and Biophysical Methods. 7 (1), 7-13 (1982).
  51. Cogan, E. B., Birrell, G. B., Griffith, O. H. A robotics-based automated assay for inorganic and organic phosphates. Analalytical Biochemistry. 271 (1), 29-35 (1999).

Play Video

Cite This Article
Pokhrel, A., Lingo, J. C., Wolschendorf, F., Gray, M. J. Assaying for Inorganic Polyphosphate in Bacteria. J. Vis. Exp. (143), e58818, doi:10.3791/58818 (2019).

View Video