Summary

体外ヒト間葉系幹細胞の心筋細胞のような細胞への分化

Published: August 09, 2017
doi:

Summary

ここでは、機能、契約、心筋細胞のような細胞を生成するために若いヒト間葉系幹細胞源の心臓微分の潜在性を効率的に活用する方法を提案するの in vitro

Abstract

心筋梗塞とその後虚血性連鎖結果心筋細胞、うっ血性心不全、世界の死亡率の一流の原因につながるの広汎な損失。間葉系幹細胞 (Msc) は、現在、侵襲的な技術を交換する細胞ベースの治療に有望なオプションです。MSCs は、心筋細胞の種類を含む、間葉系の系統に区別できるが、完全な機能的な細胞分化がまだ達成されていません。以前の差別化の方法は、薬理学的エージェントまたは成長の要因に基づいていた。しかし、もっと生理学的に関連する戦略には MSCs cardiomyogenic 変換を受けることも可能です。心筋細胞のような収縮細胞を生産する心筋細胞の送り装置の層に MSC 骨材を用いた微分法を紹介します。

ひと臍帯血管周囲細胞 (HUCPVCs) がより大きい微分よりも潜在的なを持っている示されている一般的骨髄 MSCs (BMSCs) など、MSC の種類を調査しました。ひきつづいて若いソースとして古いソースと比較して妊娠 (FTM) の HUCPVCs の cardiomyogenic の可能性を検討した.FTM の HUCPVCs プロパティを保持、子宮内immunoprivileged 培養 MSCs の小説、豊かな源である生体外で。HUCPVCs この分化プロトコル、FTM の用語を使用して (すなわち、心筋増強物の要因 2 C、心筋トロポニン T、心筋ミオシンの重鎖、信号規定する蛋白質の α とコネキシン 43) 心筋細胞マーカーの発現の増加によって示されるように、BMSCs と比較して大幅に増加した cardiomyogenic 分化を達成しました。彼らはまた彼らの低い HLA A 式と高い HLA G 式で実証としての有意に低い免疫原性を維持しました。分化の集計ベースを適用すると、FTM HUCPVCs は、潜在的なと心臓フィーダー層を共培養後 1 週間以内のセルのクラスターを契約、そう最初の MSC 型になって生成された高められた形成を示した。

我々 の結果はこの差別化戦略 FTM HUCPVCs などの若い MSCs の cardiomyogenic の可能性を効果的に活用することができることを実証してから、その再生効果で体内を向上させる潜在的な戦略ができるその体外前分化を示唆しています。

Introduction

うっ血性心不全 (CHF) は、罹患率と死亡率の世界の一流の原因として保持します。スイスフランは、心筋細胞の大規模な損失と心筋梗塞 (MI)1の病理の結果として瘢痕組織の細胞の開発を多く発生します。中心部は部分的に自己更新器官が、豊かさと多くの場合受傷後適切に回復するが不十分となった高齢者の患者の機能で常駐幹・前駆細胞プール大幅組織再生を実行するための責任が減少します。従って、健康なドナー細胞の損傷を受けた心筋への移植を含む実験的治療法の開発に大きな関心があります。ドナー細胞だけでなく、組織の構造を復元、また影響を受けた心筋の機能回復を達成するために不可欠です。

ネイティブの心は心臓組織に常駐を採用し、受傷後の内因性骨髄由来幹細胞修復2,3,4。再生細胞ホストとドナー由来もありますは、適切な表現と効率的にかつ安全に失われた細胞を置換する機能と共に、改造の心筋の微小環境で関数を取得する能力を持っています。In vitro分化の方法は、高効率、幹細胞を用いた心筋細胞生産5,6を達成するために広く使用されています。心臓系統マーカーの発現プロファイルを使用して、心臓系統7に向かって幹細胞分化のプロセスを定義します。初期分化マーカー、NKX2.5、心筋増強因子 2 C など (Mef2c) および GATA48,9、cardiomyogenic プロセスの開始を示すことができます。差別化の有効性を評価するために一般的に使用される成熟心筋細胞マーカーが信号調節タンパク質 α (SIRPA)10, 心筋トロポニン T (cTnT)11、重鎖心筋ミオシン (MYH6)8,12,13, とコネキシン 43 (cx 43)14,,1516。胚性幹細胞 (Esc) と多能性幹細胞 (Psc) を使用してメソッドは徹底的に最適し、誘導要因、酸素および栄養素のグラデーションの詳細とアクション5,6,7,17,18の正確なタイミングについて説明しました。それにもかかわらず、ESC と PSC ベースの技術はまだ次善の電気生理学的および免疫学的機能19,20と共に複数の倫理と安全性懸念を提示します。多くの場合これらの細胞移植ホストは、immunorejection を体験し、永久的な免疫抑制を必要とします。これは、主に主要組織適合性の複雑な (MHC) 分子ホストとドナーおよび結果 T 細胞応答21までの不一致によるものです。ながら個々 の MHC クラス I 可能な解決策は、マッチング、やすく実習が拒絶反応の懸念を克服するために immunoprivileged では普遍的に細胞ソースが必要があります。

特に、BMSCs、臨床では、MSCs 用代替細胞ソースとして 1995年22で彼らの初期の説明から歯周組織再生用検討しました。MSCs は、ほぼすべての血管柄付き組織23で見つけることができる居住者の再生細胞であると考えられています。目的のソースからの分離、MSCs 文化で容易に拡張することができます、広範な傍分泌能力を持っている、しばしば immunoprivileged または免疫調節特性24,25を持っています。その安全性と有効性既に示されているいくつかの臨床研究で特に心筋再生3,26

多くの MSC 差別化戦略は、変数効率 5-アザシチジン22や DMSO27、および成長のような Bmp5,7,28,29またはアンジオテンシン II30、形態形成の要因などの薬理学的エージェントを利用します。これらの戦略は、素朴な再生細胞はホーミングまたは傷害のサイトに配信されている後に発生する可能性が障害物に基づいていないただし、体内。もっと生理学的に関連する戦略は、一方が難しく定義し操作、組織微小環境自体からの信号を通して MSC 分化を誘起することを前提に基づいています。以前の研究は心臓セル lysates31または心室心筋32,33, への曝露が示されているまたは直接プライマリ心筋細胞の in vitro15,34, との接触が MSCs で心臓マーカーの発現を高めることができます。他の人は一部、BMSCs と心筋細胞39,40の融合生成初期の心筋が MSCs35,36,37,38, 心臓傷害の治療後特発性心筋を実証しています。私たちの知る限り、ヒト MSCs (hMSCs) の組織の任意のソースから機能、自発的に引き締まる心筋細胞がまだ報告されていません。

現在のコンセンサスは、MSCs のすべてが血管周囲細胞23から発生することです。周皮細胞プロパティを持つ若い MSCs は、ひと臍帯組織41,42,43の血管領域から分離できます。BMSCs と比較して HUCPVCs は、潜在的な増加の分化と他のいくつかの再生の利点、両方生体外で41,44in vivo45,46,47を所有しています。特に、妊婦の胎児のインターフェイス ソース、HUCPVCs MSCs の大人の情報源と比較して有意に低い免疫原性があります。我々 の研究に焦点を当てて評価と FTM HUCPVCs、調査、MSCs の最年少のソースの前臨床応用増殖性と高い multilineage を増加するいると我々 は以前に、分化能力、cardiomyogenic 系統41を含みます。

ここでは、MSCs。 集計の完了 cardiomyogenic 差別化を達成するために誘導の力より良い条件モデル生体内で2D 付着性文化と比較して 3 D 環境を提供するように、粒の形成と心筋細胞の主要な送り装置の層を組み合わせたプロトコルを提案する.心臓フィーダー層を利用した MSCs の究極移植サイトの代表である環境を提供します。集合体を形成し、彼らの免疫特権を維持しながらアダルト BMSCs に比べて心臓表現型に到達する能力が高いを前または出生後のへその緒から分離された MSCs の若いソースにことを示します。心臓系統マーカー遺伝子の誘導発現細胞内急昇格以外 (すなわち、 cTnT および MYH6) および細胞表面蛋白質 (すなわちSIRPA と配列とコネキシン 43) 心筋細胞の特定、紹介は FTM HUCPVCs の微分の潜在性ことができますこの方法で活かされることや心筋細胞のような細胞を自発的に契約に上昇を与えることができます。

Protocol

All studies involving animals were conducted and reported according to ARRIVE guidelines48. All studies were performed with institutional research ethics board approval (REB number 454-2011, Sunnybrook Research Institute; REB 29889, University of Toronto, Toronto, Canada). All animal procedures were approved by the Animal Care Committee of the University Health Network (Toronto, Canada), and all animals received humane care in compliance with the Guide for the Care and Use of Laboratory Animals, 8…

Representative Results

HUCPVCs Display Higher Aggregate-formation Potential and CD49f Expression Levels Compared to BMSCs: To induce the differentiation of hMSCs (i.e., FTM HUCPVCs, term HUCPVCs, and BMSCs), single-cell suspensions of undifferentiated MSCs or MSC-containing hanging drops (Table 1) were transferred onto rat primary cardiomyocyte monolayers to establish direct co-cultures or aggregate co-cultur…

Discussion

幹細胞の心筋分化は、MSC のソースから心筋細胞のような細胞の生成に使用されているいくつかの異なる戦略と 2 年以上にわたって開発を進めています。これらの戦略の多くはただし、効率的ではありません、使用条件、環境移植細胞の出会い、生体内の代表的なよくないです。

既存のメソッドとは対照的は、ここで提示されたプロトコルはプライマリ心臓フィー?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは次のスタッフ メンバーに感謝し、彼らの貢献のための人員を研究: マシュー Librach、レイラ ・ Maghen、ターニャ A. Baretto、Shlomit Kenigsberg Andrée ゴーティエ ・ フィッシャー。この作品は、オンタリオ州研究基金 – 研究の卓越性 (ORF 日時、ラウンド #7) と作成プログラム株式会社によって支えられました。

Materials

0.25% Trypsin/EDTA Gibco 25200056 For cell dissociation
Alpha-MEM Gibco 12571071 For HUCPVC and BMSC culture media.
PE-conjugated anti-human/mouse CD49f antibody Biolegend 313612 Integrin marker for FC
APC-conjugated human Cx43/GJA1 antibody R&D Systems FAB7737A Connexin 43 marker for FC
FITC-conjugated HLA-A2 antibody Genway Biotech Inc. GWB-66FBD2 Immunogenicity marker for FC
FITC-conjugated anti-HLA-G [MEM-G/9] antibody Abcam ab7904 Immunogenicity marker for FC
FITC-conjugated mouse anti-human SIRPA/CD172a antibody AbD Serotec/Bio-Rad MCA2518F Cardiac marker for FC
APC-conjugated human TRA-1-85/CD147 antibody R&D Systems FAB3195A Human cell marker for FC and FACS
FITC-conjugated human TRA-1-85/CD147 antibody R&D Systems FAB3195F Human cell marker for FC and FACS
Anti-connexin 43/GJA1 antibody Abcam ab11370 Cx43. For ICC
Goat anti-rabbit IgG (H+L) cross-absorbed secondary antibody, Alexa Fluor 555 Life Technologies A-21428 For ICC
Anti-sarcomeric alpha actinin [EA-53] antibody Abcam ab9465 aSARC. For ICC
Goat anti-mouse IgM heavy chain cross-absorbed secondary antibody, Alexa Fluor 555 Life Technologies A-21426 For ICC
Mef2C (D80C1) XP rabbit antibody New England BioLabs Ltd. 5030S For ICC
Donkey anti-rabbit IgG (H+L) secondary antibody, Alexa Fluor 488 Life Technologies A-21206 For ICC
Anti-nuclei (HuNu) (clone 235-1) antibody EMD Millipore MAB1281 For ICC
MZ9.5 Stereomicroscope Leica For imaging aggregates.
1.5 ml centrifuge microtubes Axygen MCT-150-C For staining MSCs with fluorescent dye.
ImageJ Open source image processing software.
Aria II  BD UHN SickKids FC Facility. For cell sorting.
Bone marrow mesechymal stromal cells Lonza PT-2501 BMSCs
Bovine serum albumin Sigma-Aldrich A7030-100G BSA. To prepare solutions for ICC
BrdU EMD Millipore MAB3424 Caution: BrdU is a strong teratogen and suspected mutagen. Please ensure proper training and refer to the SDS before use.
Canto II BD UHN SickKids FC Facility. For flow cytometry.
cDNA EcoDry Premix Clontech/Takara 639570 For preparation of cDNA for qPCR
CellTracker Green CMFDA Dye Life Technologies C7025 Fluorescent imaging of cell cytoplasm
Countess automated cell counter Invitrogen Inc. C10227 For cell counting
DMEM-F12 Sigma-Aldrich D6421 For rat primary cardiomyocyte culture medium.
Dulbecco's Phosphate Buffered Saline Gibco 10010023 D-PBS, without Ca2+, Mg2+
EVOS Life Technologies In-house fluorescent microscope
FACSCalibur BD In-house. For flow cytometry.
Fetal bovine serum (Hyclone) GE Healthcare SH3039603 FBS. Component of cell culture medium.
IDT Prime Time qPCR probes Integrated Data Technologies FAM fluorophore http://www.idtdna.com/pages/products/gene-expression/primetime-qpcr-assays-and-primers
Lab Vision PermaFluor Aqueous Mounting Medium ThermoScientific TA-030-FM For storage of cells to undergo ICC
LSR II  BD UHN SickKids FC Facility. For flow cytometry.
MoFlo Astrios Beckman Coulter UHN SickKids FC Facility. For cell sorting.
Normal goat serum Cell Signaling Technology 5425S NGS. Used in blocking solution for ICC
Nunc Lab-Tek II Chamber Coverglass, 8-wells Thermo Scientific Nunc 155409 To prepare samples for ICC
OmniPur Triton X-100 Surfactant EMD Millipore 9410-OP As a component of permeabilizing solution when preparing cells for ICC
Paraformaldehyde, 16% Solution, EM Grade Electron Microscopy Sciences 15710 For fixing cells for ICC.
Penicillin/streptomycin Gibco 15140122 Component of cell culture medium.
Primers Sigma Custom Standard DNA Oligos, Desalted, 0.2 μmol CTnT_F: GGC AGC GGA AGA GGA TGC TGA A; CTnT_R: GAG GCA CCA AGT TGG GCA TGA ACG A; MYH6 F: GCA AAG TAC TGG ATG ACA CGC T; MYH6 R: GTC ATT GCT GAA ACC GAG AAT G
Quorum Spinning Disk Confocal Zeiss SickKids Imaging Facility
ReproCardio hiPS cell derived cardiomyocytes ReproCell RCD001N Positive control for qPCR
RNeasy mini kit Qiagen 74106 To isolate RNA for qPCR
Rotor-Gene SYBR Green PCR Kit Qiagen 204074 For qPCR with master mix
RPMI 1640 Gibco A1049101 For MSC, monocyte coculture medium.
TaqMan qPCR primer assays Thermo Fisher Scientific 4444556 For qPCR
Trypan Blue Life Technologies T10282 Staining of cells for viability and counting
Trypsin Gibco 272500108 For cell dissociation
Volocity Perkin-Elmer Volocity 6.3 Imaging software
0.2 μm pore filter Thermo Fisher Scientific 566-0020 For sterilizing tissue culture media
HERAcell 150i CO2 Incubator Thermo Fisher Scientific 51026410 For incubating cells
Dulbecco's phosphate buffered saline Sigma-Aldrich D8537 PBS. 1X, Without calcium chloride and magnesium chloride
Forceps Almedic 7727-A10-704 For handing rat heart. Can use any similar forceps.
Scissors Fine Science Tools 14059-11 For mincing rat heart. Curved scissors recommended.
50 mL tube BD Falcon 352070 For collection during cardiomyocyte collection and general tissue culture procedures
15 mL tube BD Falcon 352096 For general tissue culture procedures
6-well plates Thermo Scientific Nunc CA73520-906 For tissue culture
10 cm tissue culture dishes Corning 25382-428 For aggregate formation
Axiovert 40C Microscope Zeiss For bright-field imaging through out tissue culture and the rest of the protocol
70 μm cell strainer Fisherbrand 22363548 To ensure a single cell suspension before flow cytometry or sorting
Triton X-100 EMD Millipore 9410-1L Used in permeabilization solution for ICC
Hoechst 33342 Thermo Fisher Scientific H1399 Stain used during visualization of Cx43 localization

References

  1. Badano, L. P., et al. Prevalence, clinical characteristics, quality of life, and prognosis of patients with congestive heart failure and isolated left ventricular diastolic dysfunction. J Am Soc Echocardiogr. 17 (3), 253-261 (2004).
  2. Leri, A., Kajstura, J., Anversa, P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 85 (4), 1373-1416 (2005).
  3. Orlic, D., et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 98 (18), 10344-10349 (2001).
  4. Schuster, M. D., et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol. 287 (2), 525-532 (2004).
  5. Zandstra, P. W., et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9 (4), 767-778 (2003).
  6. Boheler, K. R., et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 91 (3), 189-201 (2002).
  7. Kattman, S. J., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  8. Dixon, J. E., Dick, E., Rajamohan, D., Shakesheff, K. M., Denning, C. Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network. Mol Ther. 19 (9), 1695-1703 (2011).
  9. Stennard, F. A., et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol. 262 (2), 206-224 (2003).
  10. Dubois, N. C., et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 29 (11), 1011-1018 (2011).
  11. Panteghini, M. Present issues in the determination of troponins and other markers of cardiac damage. Clin Biochem. 33 (3), 161-166 (2000).
  12. Burridge, P. W., et al. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells. 25 (4), 929-938 (2007).
  13. Ovchinnikov, D. A., et al. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev. 24 (1), 11-20 (2015).
  14. Moscoso, I., et al. Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc. 37 (1), 481-482 (2005).
  15. Ramkisoensing, A. A., et al. Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells. Stem Cells. 30 (6), 1236-1245 (2012).
  16. van Kempen, M., et al. Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation. Cell Physiol Biochem. 13 (5), 263-270 (2003).
  17. Mummery, C. L., et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 111 (3), 344-358 (2012).
  18. Puceat, M. Protocols for cardiac differentiation of embryonic stem cells. Methods. 45 (2), 168-171 (2008).
  19. Naito, H., et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation. 114, 72-78 (2006).
  20. Zimmermann, W. H., et al. Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res. 71 (3), 419-429 (2006).
  21. Hulot, J. S., et al. Considerations for pre-clinical models and clinical trials of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 5 (1), 1 (2014).
  22. Wakitani, S., Saito, T., Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 18 (12), 1417-1426 (1995).
  23. Caplan, A. I. Adult Mesenchymal Stem Cells: When, Where, and How. Stem Cells Int. 2015, 628767 (2015).
  24. Burchfield, J. S., Dimmeler, S. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair. 1 (1), 4 (2008).
  25. Hsiao, S. T., et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 21 (12), 2189-2203 (2012).
  26. Tomita, S., et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 100, 247-256 (1999).
  27. Skerjanc, I. S. Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med. 9 (5), 139-143 (1999).
  28. Hou, J., et al. Combination of BMP-2 and 5-AZA is advantageous in rat bone marrow-derived mesenchymal stem cells differentiation into cardiomyocytes. Cell Biol Int. 37 (12), 1291-1299 (2013).
  29. Yoon, J., et al. Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol. 60 (3), 277-284 (2005).
  30. Xing, Y., Lv, A., Wang, L., Yan, X. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem. 360 (1-2), 279-287 (2012).
  31. Yuan, Y., et al. Differentiation of mesenchymal stem cells into cardio myogenic cells under the induction of myocardial cell lysate. Zhonghua Xin Xue Guan Bing Za Zhi. 33 (2), 170-173 (2005).
  32. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 105 (1), 93-98 (2002).
  33. Yannarelli, G., et al. Donor mesenchymal stromal cells (MSCs) undergo variable cardiac reprogramming in vivo and predominantly co-express cardiac and stromal determinants after experimental acute myocardial infarction. Stem Cell Rev. 10 (2), 304-315 (2014).
  34. Rangappa, S., Entwistle, J. W., Wechsler, A. S., Kresh, J. Y. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg. 126 (1), 124-132 (2003).
  35. Bakogiannis, C., et al. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr Med Chem. 19 (16), 2597-2604 (2012).
  36. Deb, A., et al. Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation. 107 (9), 1247-1249 (2003).
  37. Laflamme, M. A., Myerson, D., Saffitz, J. E., Murry, C. E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res. 90 (6), 634-640 (2002).
  38. Quaini, F., et al. Chimerism of the transplanted heart. N Engl J Med. 346 (1), 5-15 (2002).
  39. Alvarez-Dolado, M., et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 425 (6961), 968-973 (2003).
  40. Nygren, J. M., et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 10 (5), 494-501 (2004).
  41. Hong, S. H., et al. Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev. 22 (17), 2425-2439 (2013).
  42. Sarugaser, R., Ennis, J., Stanford, W. L., Davies, J. E. Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol. 482, 269-279 (2009).
  43. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., Davies, J. E. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 23 (2), 220-229 (2005).
  44. Kadivar, M., et al. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun. 340 (2), 639-647 (2006).
  45. Baksh, D., Yao, R., Tuan, R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 25 (6), 1384-1392 (2007).
  46. Wu, K. H., et al. Cardiac potential of stem cells from whole human umbilical cord tissue. J Cell Biochem. 107 (5), 926-932 (2009).
  47. Yannarelli, G., et al. Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant. 22 (9), 1651-1666 (2013).
  48. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 1 (2), 94-99 (2010).
  49. Yu, K. R., et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells. 30 (5), 876-887 (2012).
  50. Lee, R. H., et al. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 113 (4), 816-826 (2009).
  51. Szaraz, P., et al. In Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells. Stem Cells Int. 2016, 7513252 (2016).
  52. Bauwens, C., Yin, T., Dang, S., Peerani, R., Zandstra, P. W. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng. 90 (4), 452-461 (2005).
  53. Jing, D., Parikh, A., Tzanakakis, E. S. Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell Transplant. 19 (11), 1397-1412 (2010).
  54. Hare, J. M., et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 308 (22), 2369-2379 (2012).
  55. Huang, X. P., et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 122 (23), 2419-2429 (2010).
  56. Hare, J. M., et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 54 (24), 2277-2286 (2009).

Play Video

Cite This Article
Szaraz, P., Gratch, Y. S., Iqbal, F., Librach, C. L. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells. J. Vis. Exp. (126), e55757, doi:10.3791/55757 (2017).

View Video