Summary

Une plate-forme robotique pour haut débit protoplastes Isolement et Transformation

Published: September 27, 2016
doi:

Summary

Une méthode à haut débit automatisée, la production de tabac en protoplastes et la transformation est décrite. Le système robotisé permet l'expression du gène massivement parallèle et de découverte dans le système modèle BY-2 qui devrait être traduisible aux cultures non-modèle.

Abstract

Au cours de la dernière décennie, il y a eu une résurgence de l'utilisation des protoplastes végétaux qui vont des espèces modèles pour recadrer les espèces, pour l'analyse des voies de signalisation de la transduction, les réseaux de régulation transcriptionnelle, l'expression des gènes, génome d'édition, et la neutralisation des gènes. En outre, des progrès significatifs ont été réalisés dans la régénération des plantes à partir de protoplastes, qui a généré encore plus d'intérêt dans l'utilisation de ces systèmes pour la génomique végétale. Dans ce travail, un protocole a été mis au point pour l'automatisation de l'isolement de protoplastes et la transformation de 2 (PAR-2) la culture du tabac en suspension un «Bright Yellow» en utilisant une plate-forme robotique. Les procédures de transformation ont été validés à l'aide d'une protéine fluorescente orange (OFP) gène rapporteur (pporRFP) sous le contrôle du promoteur de chou-virus de la mosaïque 35S (35S). OFP expression dans des protoplastes a été confirmée par microscopie à épifluorescence. Les analyses comprenaient également des méthodes d'efficacité de production protoplastes utilisant propidium iodure. Enfin, les enzymes de qualité alimentaire à faible coût ont été utilisés pour la procédure d'isolement de protoplastes, de contourner la nécessité d'enzymes de laboratoire de qualité qui sont un coût prohibitif en haut débit automatisé isolement et l'analyse protoplastes. Basé sur le protocole mis au point dans ce travail, la procédure complète de l'isolement de protoplastes à la transformation peut être réalisée en moins de 4 heures, sans aucune intervention de l'opérateur. Alors que le protocole mis au point dans ce travail a été validé avec la culture cellulaire BY-2, les procédures et les méthodes doivent être traduisible à tout système de culture en suspension végétale / protoplastes, ce qui devrait permettre une accélération de la recherche en génomique des cultures.

Introduction

Ces dernières années , il y a eu une impulsion significative placé sur la conception des cultures transgéniques pour surmonter diverses maladies 1, conférer une résistance aux herbicides 2, confère la sécheresse 3,4 et la tolérance au sel 5, prévenir herbivory 6, augmenter le rendement de la biomasse 7, et de diminuer la paroi cellulaire récalcitrante 8. Cette tendance a été favorisée par le développement de nouveaux outils moléculaires pour générer des plantes transgéniques, y compris le génome d'édition en utilisant CRISPR et TALENs 9 et silençage génique par ARNdb 10, miRNA 11 et siRNA 12. Bien que ces technologies ont simplifié la génération de plantes transgéniques, ils ont également créé un goulot d'étranglement, où le grand nombre de plantes transgéniques générées ne peuvent pas être criblée en utilisant les systèmes traditionnels qui reposent sur la régénération des plantes. Associés à ce goulot d'étranglement, tout en réduisant au silence et génome édition constructions peuvent être insérés rapidement dans les plantes, un grand nombre detraits ciblés ne parviennent pas à produire l'effet désiré, qui est souvent découverte que les plantes sont analysées dans la serre. Dans ce travail, nous avons développé une méthode pour rapide automatisée, le dépistage, à haut débit de protoplastes végétaux, en particulier pour résoudre le goulot d'étranglement dans le dépistage précoce d'un grand nombre de génomes d'édition et le gène silencieux cibles.

L'utilisation de protoplastes, par opposition à des cellules végétales intactes, présente plusieurs avantages pour le développement d'une plateforme automatisée. Tout d' abord, les protoplastes sont isolés après digestion de la paroi cellulaire de la plante, et cette barrière ne présentent plus, l' efficacité de transformation 13 est augmentée. Dans les cellules végétales intactes il y a seulement deux méthodes bien établies pour la transformation, biolistique 14 et Agrobacterium transformation médiée 15. Aucune de ces méthodes peuvent être facilement convertis aux plates-formes de manipulation de liquides, comme biolistique nécessite un équipement spécialisé pour transformation, alors que Agrobacterium transformation médiée nécessite co-culture et l' élimination ultérieure des bactéries. Ni se prêtent à des procédés à haut débit. Dans le cas de protoplastes, la transformation est habituellement effectuée en utilisant le polyéthylène glycol (PEG) de transfection médiée 16, qui ne nécessite plusieurs échanges de solutions, et est idéale pour les plates – formes de manipulation de liquides. En second lieu, les protoplastes, par définition, sont des cultures monocellulaires, et donc les problèmes associés à l'agglutination et la formation chaîne dans des cultures de cellules végétales, ne sont pas observés dans les protoplastes. En termes de dépistage rapide à l'aide d'un spectrophotomètre à base de plaque, l'agglutination des cellules, ou des cellules dans plusieurs plans vont conduire à des difficultés dans l'acquisition de mesures cohérentes. Etant donné que les protoplastes sont aussi plus denses que les milieux de culture, ils sédimentent au fond du puits, la formation d'une monocouche, ce qui est favorable à la spectrophotométrie sur la base de plaque. Enfin, alors que les cultures en suspension de cellules végétales sont primarille dérivé de 17 cals, les protoplastes peuvent être récoltées à partir d' un certain nombre de tissus végétaux, conduisant à la possibilité d'identifier une expression spécifique d' un tissu. Par exemple, la capacité d'analyser root- ou une expression spécifique de feuille d'un gène peut être très important pour la prédiction du phénotype. Pour ces raisons, les protocoles mis au point dans ce travail ont été validées en utilisant des protoplastes isolés du tabac largement utilisé (Nicotiana tabacum L.) 2 (PAR-2) de culture en suspension 'Bright Yellow'.

La culture en suspension BY-2 a été décrite comme étant la cellule "Hela" des plantes supérieures, en raison de son utilisation généralisée dans l' analyse moléculaire des cellules végétales 18. Récemment, PAR-2 cellules ont été utilisées pour étudier les effets de facteurs de stress plante 19-22, protéine intracellulaire localisation 23,24, et la biologie cellulaire de base 25-27 démontrant l'utilité générale de ces cultures en biologie végétale. Un avantage supplémentaire de BY-2 est la culturepossibilité de synchroniser les cultures avec aphidicoline, ce qui peut conduire à une meilleure reproductibilité pour l' expression génique des études 28. En outre, des méthodes ont été mises au point pour l'extraction de PAR-2 protoplastes utilisant des enzymes à faible coût 29,30, comme enzymes traditionnellement utilisées pour générer des protoplastes sont des coûts prohibitifs pour les systèmes à haut débit. En tant que tel, le protocole décrit ci-dessous a été validé en utilisant la culture en suspension BY-2, mais il devrait être amendable à une culture usine de suspension cellulaire. Les expériences de validation de concept sont effectuées en utilisant une protéine de fluorescence orange (OFP) gène rapporteur (pporRFP) des Porites de coraux durs porites 31 sous le contrôle du promoteur CAMV 35S.

Protocol

1. Mise en place de la suspension des cultures cellulaires Préparer liquide par 2 supports en y ajoutant 4,43 g Linsmaier & Skoog basal, 30 g de saccharose, 200 mg de KH 2 PO 4 et 200 pg d'acide 2,4-dichlorophénoxyacétique (2,4-D) à 900 ml d' eau distillée l'eau et le pH à 5,8 avec 0,1 M KOH. Après ajustement du pH, ajuster le volume final à 1000 ml avec de l'eau distillée et autoclave. Les médias peuvent être stockés jusqu'à 2 semaines à 4 ° C. </l…

Representative Results

Dans la présente étude, le taux de doublement de BY-2 a varié de 14 à 18 h dépendant de la température à laquelle les cultures ont été incubées, en accord avec les rapports précédents, d'une longueur moyenne de 15 heures du cycle cellulaire. Avec ce taux de doublement, 1: 100 à partir inoculum a été utilisé pour initier des cultures, ce qui conduit à des cultures avec un volume cellulaire tassé (CVP) de 50% en 5-7 jours. Dans le protocole actuel, dans lequel les cul…

Discussion

Le protocole décrit ci-dessus a été validé avec succès pour l'isolement de protoplastes, l'énumération et la transformation du tabac en utilisant une culture de cellules en suspension BY-2; Toutefois, le protocole pourrait facilement être étendu à toute culture de suspension de la plante. À l' heure actuelle, l' isolement de protoplastes et la transformation ont été réalisés dans de nombreuses plantes, notamment le maïs (Zea mays) 10, la carotte (Daucus carota)</em…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by Advanced Research Projects Agency – Energy (ARPA-E) Award No. DE-AR0000313.

Materials

Orbitor RS Microplate mover Thermo Scientific
Bravo Liquid Handler Agilent
Synergy H1 Multi-mode Reader BioTek
MultiFlo FX Multi-mode Dispenser BioTek
Teleshake Inheco 3800048
CPAC Ultraflat Heater/cooler Inheco 7000190
Vworks Automation Software Agilent Software used to control and write protocols for Agilent Bravo
Momentum Software Thermo Scientific Task scheduling software for controlling Orbiter RS
Liquid Handling Control 2.17 Software Biotek Software used to control and write protocols for MultiFlo FX
IX81 Inverted Microscope Olympus
Zyla 3-Tap microscope camera Andor
ET-CY3/TRITC Filter Set Chroma Technology Corp 49004
Rohament CL AB Enzymes sample bottle low-cost cellulase
Rohapect UF AB Enzymes sample bottle low-cost pectinase
Rohapect 10L AB Enzymes sample bottle low-cost pectinase/arabinase
Linsmaier & Skoog Basal Medium Phytotechnology Laboratories L689
2,4 dichlorophenoxyacetic acid Phytotechnology Laboratories D295
propidium iodide Sigma Aldrich P4170
Poly (ethylene glycol) 4000 Sigma Aldrich 95904-250G-F Formerly Fluka PEG
Propidium Iodide Fisher Scientific 25535-16-4 Acros Organics
CaCl2 Sigma Aldrich C7902-1KG
Sodium Acetate Fisher Scientific BP333-500
Mannitol Sigma Aldrich M1902-1KG
Sucrose Fisher Scientific S5-3
KH2PO4 Fisher Scientific AC424205000
KOH Sigma Aldrich P1767
Gelzan CM Sigma Aldrich G1910-250G
6-well plate Thermo Scientific 103184
96-well 1.2 ml deep well plate Thermo Scientific AB-0564
96 well optical bottom plate Thermo Scientific 165305
Finntip 1000 Wide bore Pipet tips Thermo Scientific 9405 163
NaCl Fisher Scientific BP358-10
KCl Sigma Aldrich P4504-1KG
MES Fisher Scientific AC17259-5000
MgCl2 Fisher Scientific M33-500

References

  1. Atkinson, H. J., Lilley, C. J., Urwin, P. E. Strategies for transgenic nematode control in developed and developing world crops. Curr. Opin. Biotech. 23 (2), 251-256 (2012).
  2. Duke, S. O. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag. Sci. 71 (5), 652-657 (2015).
  3. Mir, R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., Varshney, R. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 125 (4), 625-645 (2012).
  4. Hu, H., Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Bio. 65, 715-741 (2014).
  5. Marco, F., et al. . Plant Biology and Biotechnology. , 579-609 (2015).
  6. Edgerton, M. D., et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30 (6), 493-496 (2012).
  7. Vanhercke, T., et al. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotech. J. 12 (2), 231-239 (2014).
  8. Baxter, H. L., et al. Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotech. J. 12 (7), 914-924 (2014).
  9. Xing, H. L., et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14 (1), 327 (2014).
  10. Cao, J., Yao, D., Lin, F., Jiang, M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physio. Plant. 36 (5), 1271-1281 (2014).
  11. Martinho, C., et al. Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Mol. Plant. 8 (2), 261-275 (2015).
  12. Bart, R., Chern, M., Park, C. J., Bartley, L., Ronald, P. C. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods. 2 (1), 13 (2006).
  13. Jiang, F., Zhu, J., Liu, H. -. L. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma. 250 (6), 1231-1238 (2013).
  14. Martin-Ortigosa, S., Valenstein, J. S., Lin, V. S. Y., Trewyn, B. G., Wang, K. Nanotechnology meets plant sciences: Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv. Funct. Mater. 22 (17), 3529-3529 (2012).
  15. Křenek, P., et al. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. , (2015).
  16. Yoo, S. D., Cho, Y. H., Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2 (7), 1565-1572 (2007).
  17. Mustafa, N. R., de Winter, W., van Iren, F., Verpoorte, R. Initiation, growth and cryopreservation of plant cell suspension cultures. Nat. Protoc. 6 (6), 715-742 (2011).
  18. Nagata, T., Nemoto, Y., Hasezawa, S. Tobacco BY-2 cell line as the "HeLa" cell in the cell biology of higher plants. Int. Rev. Cytol. 132 (1), 1-30 (1992).
  19. Centomani, I., et al. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma. , 1-9 (2015).
  20. Sgobba, A., et al. Cyclic AMP deficiency stimulates a stress condition in tobacco BY-2 cells. BioTechnologia. 94 (2), (2013).
  21. Väisänen, E. E., et al. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta. 242 (3), 747-760 (2015).
  22. Ortiz-Espìn, A., et al. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. Ann. Botany. 116 (4), 571-582 (2015).
  23. Ito, Y., et al. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol. Bio. Cell. 23 (16), 3203-3214 (2012).
  24. Madison, S. L., Nebenführ, A. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment. Mol. Plant. 4 (5), 896-908 (2011).
  25. de Pinto, M. C., et al. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol. 163 (4), 1766-1775 (2013).
  26. Hanamata, S., et al. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells. Plant Signa. Behav. 8 (1), 22510 (2013).
  27. Sakai, A., Takusagawa, M., Nio, A., Sawai, Y. Cytological Studies on proliferation, differentiation, and death of BY-2 cultured tobacco cells. Cytologia. 80 (2), 133-141 (2015).
  28. Yasuhara, H., Kitamoto, K. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells. Plant Cell Physiol. 55 (5), 913-927 (2014).
  29. Buntru, M., Vogel, S., Stoff, K., Spiegel, H., Schillberg, S. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates. Biotechnol. Bioeng. 112 (5), 867-878 (2015).
  30. Buntru, M., Vogel, S., Spiegel, H., Schillberg, S. Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system. BMC Biotechnol. 14 (1), 37 (2014).
  31. Alieva, N. O., et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE. 3 (7), 2680 (2008).
  32. Maćkowska, K., Jarosz, A., Grzebelus, E. Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tiss. Org. 117 (2), 241-252 (2014).
  33. Guo, Y., Song, X., Zhao, S., Lv, J., Lu, M. A transient gene expression system in Populus euphratica Oliv. protoplasts prepared from suspension cultured cells. Acta Physio. Plant. 37 (8), 1-8 (2015).
  34. Wang, H., Wang, W., Zhan, J., Huang, W., Xu, H. An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Sci. Hort. 191, 82-89 (2015).
  35. Masani, M. Y. A., Noll, G. A., Parveez, G. K. A., Sambanthamurthi, R., Pruefer, D. Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One. 9 (5), 96831 (2014).
  36. Sasamoto, H., Ashihara, H. Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts. Phytochem. Lett. 7, 38-41 (2014).
  37. Uddin, M. J., Robin, A. H. K., Raffiand, S., Afrin, S. Somatic embryo formation from co-cultivated protoplasts of Brassica rapa & B. juncea. Am. J. Exp. Ag. 8 (6), 342-349 (2015).
  38. Hayashimoto, A., Li, Z., Murai, N. A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93 (3), 857-863 (1990).
  39. Mazarei, M., Al-Ahmad, H., Rudis, M. R., Stewart, C. N. Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnol. J. 3 (3), 354-359 (2008).
  40. Mazarei, M., Al-Ahmad, H., Rudis, M. R., Joyce, B. L., Stewart, C. N. Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application. Plant Sci. 181 (6), 712-715 (2011).
  41. Locatelli, F., Vannini, C., Magnani, E., Coraggio, I., Bracale, M. Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Rep. 21 (9), 865-871 (2003).
  42. Di Sansebastiano, G. P., Paris, N., Marc-Martin, S., Neuhaus, J. M. Specific accumulation of GFP in a non-acididc vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 15 (4), 449-457 (1998).
  43. De Sutter, V., et al. Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J. 44 (6), 1065-1076 (2005).

Play Video

Cite This Article
Dlugosz, E. M., Lenaghan, S. C., Stewart, Jr., C. N. A Robotic Platform for High-throughput Protoplast Isolation and Transformation. J. Vis. Exp. (115), e54300, doi:10.3791/54300 (2016).

View Video