Una metodologia high-throughput, la produzione di protoplasti di tabacco automatizzata e la trasformazione è descritto. Il sistema robotico consente l'espressione genica massicciamente parallelo e la scoperta nel sistema modello BY-2 che dovrebbe essere traducibile di colture non-modello.
Negli ultimi dieci anni c'è stata una recrudescenza nell'uso dei protoplasti vegetali che vanno da specie modello per ritagliare le specie, per l'analisi di trasduzione del segnale, reti di regolazione trascrizionale, l'espressione genica, del genoma-editing, e Gene-silenziamento. Inoltre, sono stati compiuti progressi significativi nella rigenerazione di piante da protoplasti, che ha generato ancor più interesse per l'uso di tali sistemi per genomica vegetale. In questo lavoro, un protocollo è stato sviluppato per l'automazione di isolamento protoplasti e trasformazione da 2 (BY-2) coltura in sospensione tabacco un 'giallo brillante' utilizzando una piattaforma robotica. Le procedure di trasformazione sono stati convalidati usando un gene reporter proteina fluorescente arancione (OFP) (pporRFP) sotto il controllo del promotore cavolfiore mosaic virus 35S (35S). espressione OFP in protoplasti stata confermata mediante microscopia in epifluorescenza. Le analisi inclusi anche i metodi di efficienza di produzione di protoplasti utilizzando propidium ioduro. Infine, a basso costo enzimi per alimenti sono stati utilizzati per la procedura di isolamento di protoplasti, eludendo la necessità di enzimi di laboratorio di grado che sono un costo proibitivo in high-throughput automatizzato isolamento di protoplasti e di analisi. Basato sul protocollo sviluppato in questo lavoro, la procedura completa dall'isolamento protoplasti di trasformazione può essere effettuata in meno di 4 ore, senza alcun intervento da parte dell'operatore. Mentre il protocollo sviluppato in questo lavoro è stato convalidato con la coltura cellulare BY-2, le procedure ei metodi dovrebbero essere traducibile a qualsiasi / sistema di coltura in sospensione di protoplasti impianto, che dovrebbe consentire l'accelerazione della ricerca genomica nel grano.
Negli ultimi anni vi è stato significativo impulso posto sulla progettazione delle colture transgeniche per superare le varie malattie 1, dotare resistenza agli erbicidi 2, conferiscono alla siccità e 3,4 tolleranza al sale 5, prevenire erbivori 6, aumento della biomassa resa 7, e diminuire recalcitrance parete cellulare 8. Questa tendenza è stata aiutata dallo sviluppo di nuovi strumenti molecolari per la generazione di piante transgeniche, tra cui genoma di modifica utilizzando CRISPR e Talens 9, e silenziamento genico attraverso dsRNA 10, miRNA 11, e siRNA 12. Mentre queste tecnologie hanno semplificato la generazione di piante transgeniche, hanno anche creato un collo di bottiglia, dove il gran numero di piante transgeniche generate non possono essere sottoposti a screening con sistemi tradizionali che si basano sulla rigenerazione delle piante. In relazione a questo collo di bottiglia, mentre il silenziamento e del genoma di modifica costrutti possono essere rapidamente inseriti nelle piante, molte delletratti mirati riescono a produrre l'effetto desiderato, che spesso non è scoperto fino piante sono analizzati nella serra. In questo lavoro, abbiamo messo a punto un metodo per la rapida automatizzato, lo screening, high-throughput di protoplasti vegetali, in particolare per affrontare il collo di bottiglia attuale screening precoce di un gran numero di genoma-editing e silenziamento genico obiettivi.
L'uso di protoplasti, al contrario di cellule vegetali intatte, ha diversi vantaggi per lo sviluppo di una piattaforma automatizzata. Innanzitutto, protoplasti sono isolati dopo la digestione della parete cellulare, e questo non è più presente barriera, efficienza di trasformazione è aumentato 13. In cellule vegetali intatte ci sono solo due metodi consolidati per la trasformazione, biolistics 14 e Agrobacterium mediata trasformazione 15. Nessuno di questi metodi può essere facilmente tradotto per piattaforme gestione di liquidi, come biolistics richiede attrezzature specializzate per Transformazioni, mentre Agrobacterium trasformazione mediata richiede co-cultura e la successiva rimozione dei batteri. Né sono suscettibili di metodi di high throughput. Nel caso di protoplasti, trasformazione viene normalmente condotta utilizzando polietilene glicole (PEG) trasfezione mediata 16, che richiede solo alcuni scambi soluzione, ed è particolarmente adatto per le piattaforme gestione dei liquidi. In secondo luogo, protoplasti, per definizione, sono culture monocellulari e quindi i problemi associati con formazione di grumi e catena di formazione in colture cellulari vegetali, non sono osservati in protoplasti. In termini di screening rapido utilizzando uno spettrofotometro piatto a base di aggregazione delle cellule, o cellule in piani multipli porterà a difficoltà di acquisire misurazioni coerenti. Poiché protoplasti sono anche più densa loro terreni di coltura, essi sedimentare sul fondo dei pozzetti, formando un monostrato, che è favorevole per spettrofotometria piastra base. Infine, mentre colture in sospensione di cellule vegetali sono Primarily derivati da callo 17, protoplasti possono essere raccolte da un certo numero di tessuti vegetali, portando alla capacità di identificare l'espressione tessuto-specifica. Ad esempio, la capacità di analizzare root- o-specifico espressione foglia di un gene può essere molto importante fenotipo previsione. Per queste ragioni, i protocolli sviluppati in questo lavoro sono stati convalidati usando protoplasti isolati dal tabacco diffuso (Nicotiana tabacum L.) 'Bright Yellow' 2 (BY-2) cultura sospensione.
La coltura in sospensione BY-2 è stato descritto come la cella "HeLa" di piante superiori, grazie al suo uso diffuso in analisi molecolare di cellule vegetali 18. Recentemente, BY-2 le cellule sono state usate per studiare gli effetti delle piante di stress 19-22, la localizzazione della proteina intracellulare 23,24, e biologia cellulare di base 25-27 dimostrare l'ampio programma di utilità di queste culture in biologia vegetale. Un ulteriore vantaggio di BY-2 culture è ilpossibilità di sincronizzare le culture con afidicolina, che può portare ad una maggiore riproducibilità per l'espressione genica studia 28. Inoltre, sono stati sviluppati metodi per l'estrazione di BY-2 protoplasti utilizzando enzimi basso costo 29,30, come enzimi tradizionalmente utilizzati per generare protoplasti sono costi proibitivi per i sistemi ad elevata capacità. Come tale, il protocollo descritto di seguito è stato convalidato utilizzando la coltura in sospensione BY-2, ma dovrebbe essere modificabile a qualsiasi coltura in sospensione delle cellule vegetali. Proof-of-concept esperimenti vengono eseguiti utilizzando un arancio proteina a fluorescenza (OFP) gene reporter (pporRFP) dalle Porites di corallo duro Porites 31 sotto il controllo del promotore CaMV 35S.
Il protocollo sopra descritto è stato convalidato con successo per l'isolamento di protoplasti, l'enumerazione e la trasformazione utilizzando il tabacco coltura cellulare sospensione BY-2; Tuttavia, il protocollo potrebbe facilmente essere esteso a qualsiasi coltura in sospensione pianta. Allo stato attuale, l'isolamento di protoplasti e trasformazione è stato raggiunto in numerose piante, tra cui il mais (Zea mays) 10, carota (Daucus carota) 32, il pioppo (Popu…
The authors have nothing to disclose.
This research was supported by Advanced Research Projects Agency – Energy (ARPA-E) Award No. DE-AR0000313.
Orbitor RS Microplate mover | Thermo Scientific | ||
Bravo Liquid Handler | Agilent | ||
Synergy H1 Multi-mode Reader | BioTek | ||
MultiFlo FX Multi-mode Dispenser | BioTek | ||
Teleshake | Inheco | 3800048 | |
CPAC Ultraflat Heater/cooler | Inheco | 7000190 | |
Vworks Automation Software | Agilent | Software used to control and write protocols for Agilent Bravo | |
Momentum Software | Thermo Scientific | Task scheduling software for controlling Orbiter RS | |
Liquid Handling Control 2.17 Software | Biotek | Software used to control and write protocols for MultiFlo FX | |
IX81 Inverted Microscope | Olympus | ||
Zyla 3-Tap microscope camera | Andor | ||
ET-CY3/TRITC Filter Set | Chroma Technology Corp | 49004 | |
Rohament CL | AB Enzymes | sample bottle | low-cost cellulase |
Rohapect UF | AB Enzymes | sample bottle | low-cost pectinase |
Rohapect 10L | AB Enzymes | sample bottle | low-cost pectinase/arabinase |
Linsmaier & Skoog Basal Medium | Phytotechnology Laboratories | L689 | |
2,4 dichlorophenoxyacetic acid | Phytotechnology Laboratories | D295 | |
propidium iodide | Sigma Aldrich | P4170 | |
Poly (ethylene glycol) 4000 | Sigma Aldrich | 95904-250G-F | Formerly Fluka PEG |
Propidium Iodide | Fisher Scientific | 25535-16-4 | Acros Organics |
CaCl2 | Sigma Aldrich | C7902-1KG | |
Sodium Acetate | Fisher Scientific | BP333-500 | |
Mannitol | Sigma Aldrich | M1902-1KG | |
Sucrose | Fisher Scientific | S5-3 | |
KH2PO4 | Fisher Scientific | AC424205000 | |
KOH | Sigma Aldrich | P1767 | |
Gelzan CM | Sigma Aldrich | G1910-250G | |
6-well plate | Thermo Scientific | 103184 | |
96-well 1.2 ml deep well plate | Thermo Scientific | AB-0564 | |
96 well optical bottom plate | Thermo Scientific | 165305 | |
Finntip 1000 Wide bore Pipet tips | Thermo Scientific | 9405 163 | |
NaCl | Fisher Scientific | BP358-10 | |
KCl | Sigma Aldrich | P4504-1KG | |
MES | Fisher Scientific | AC17259-5000 | |
MgCl2 | Fisher Scientific | M33-500 |