Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from the whole brain or from either the telencephalic, tectal or cerebellar regions of the adult zebrafish brain. Additionally, we describe the procedure to manipulate gene expression in zebrafish neurospheres.
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.
Mammalian neural stem cells (NSCs) have been characterized in vitro by their ability to grow in free-floating cultures as clusters of dividing cells termed neurospheres1. In the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF), NSCs divide either symmetrically to generate self-renewing NSCs, or asymmetrically to generate two different daughter cells, i.e., a differentiating progenitor cell and a novel NSC. Neurosphere cultures are therefore a mixture of neural stem/progenitor cells and more differentiated neural cells2-4. NSCs can, however, be distinguished from other neurosphere cell-types by two specific properties: they display long-term self-renewal in free-floating cultures and they can differentiate into all neural cell lineages (i.e., neurons, astrocytes, and oligodendrocytes) following withdrawal of growth factors and adhesion to extracellular matrix substrates. In mammals, the neurosphere culture system was the first in vitro system used to demonstrate the presence of NSCs in the adult brain and remains the most commonly used tool to analyze proliferation, self-renewal capacity and multipotency of neural stem and progenitor cells. Therefore, even though sphere-forming assays suffer from some disadvantages and limitations4, this culture system is valuable for evaluating the potential of a cell to behave as a stem cell when removed from its in vivo niche4 and has been instrumental in identifying key regulators of NSC self-renewal and cell fate determination5-7.
In contrast to mammals who have limited adult neurogenesis, zebrafish constitutively produce new neurons along the whole brain axis throughout their life. The zebrafish adult brain displays multiple neurogenic niches harboring neural stem/progenitor cells making zebrafish a powerful model organism for understanding the stem cell activity in the brain as well as the molecular programs required for central nervous system regeneration. Over the past 17 years, several research groups developed methodologies for isolating and culturing zebrafish neural cells8,9. These studies were aimed at producing embryonic neuronal and glial cells in vitro, but not at maintaining NSCs and investigating their properties. Although neurospheres have been generated in the adult Apteronotus leptorhynchus (Brown Ghost Knifefish)10, a neurosphere-forming assay in the zebrafish remained to be established.
Here we describe a neurosphere-forming assay to demonstrate the role of miR-107 during zebrafish neurogenesis11. The protocol enables: 1) the collection of adult neural stem/progenitor cells either from zebrafish whole brain or from several dissected brain regions such as the telencephalon, the tectum, and the cerebellum; 2) the generation of floating and self-renewing neurospheres from adult neural stem/progenitor cells; 3) the down- and up-regulation of the expression of coding genes or small non-coding RNAs11 in neurospheres, in order to investigate their roles in the proliferation and differentiation of neural stem/progenitor cells.
Zebrafish of the WTCF strain were raised and maintained according to protocols approved by the Yale University Institutional Animal Care and Use Committee (IACUC protocol number 2012-11473). All experiments should first be approved by all relevant governmental and institutional ethics regulating bodies regarding the use of animals for research purposes.
1. Preparations
2. Dissection of the Adult Zebrafish Brain
3. Single Cell Dissociation of Adult Brain
4. Generation of Primary Neurospheres
5. Passaging of Primary Neurospheres
6. Differentiation of Primary Neurospheres
7. Gene Manipulation of Primary Neurospheres
General Scheme of the Adult Zebrafish Neurosphere Culture
Here we describe all the steps of the protocol of a neurosphere-forming assay performed from the adult zebrafish brain. First, adult neural stem/progenitor cells have been collected either from zebrafish whole brain or from several dissected brain regions such as the telencephalon, the tectum and the cerebellum (Figures 1A-C). Single cell suspension of adult neural stem/progenitor cells have then been used to generate floating and self-renewing neurospheres (Figures 1D, E). Finally, neurospheres have been instrumental in studying the down- and up-regulation of the expression of coding genes or small non-coding RNAs11 in order to investigate their roles in the proliferation and differentiation of zebrafish neural stem/progenitor cells.
Neurosphere Passaging
Zebrafish primary neurospheres can self-renew following several passages. To generate neurospheres at Passage 1 and 2, steps 5.1-5.4 were repeated twice, in a total of 6-8 days. From DiV2-4, the size of the neurospheres increased up to around 50 μm in diameter. Secondary and tertiary neurospheres were also obtained after Passage 1 and 2, respectively (Figure 2D). At Passage 3, zebrafish neurospheres were however unable to grow up at the critical size of 50 μm diameter and failed to self-renew, suggesting that our culture condition rather selects a pool of stem/progenitor cells than a pure population of neural stem cells4.
Neurosphere Differentiation
Primary, secondary or tertiary neurospheres derived from either the whole brain or from the telencephalic, cerebellar and tectal area of adult zebrafish were tested for their differentiation potentialities. Between 1 and 3 days in vitro in differentiation conditions (DiVd1-DiVd3), a monolayer of adherent cells was observed (Figures 3A, B). As illustrated in Figure 3C, at DiVd4, axonal like projections as well as glia cells were visible and distinguishable by immunohistological or gene expression analyses11, assessing that neural stem/progenitor cells had differentiated. Similarly, neurons and glial cells differentiated from neural stem/progenitor cells isolated from different brain territories (Figures 3D, E).
Gene Expression Manipulation in Zebrafish Neurospheres
We have tested the role of miR-107 on the neuronal and glial differentiation of whole zebrafish brain-derived neural stem/progenitor cells (Figure 4). We showed that the downregulation of miR-107 by anti-miR-107 did not affect neurosphere formation but altered neuronal differentiation, as indicated by the abnormal growth of axonal processes (Figures 4A, B). RT-PCR gene expression analyses confirmed that inhibition of miR-107 leads to an increased expression of both the neuroblast marker Neurogenin-1 (Ngn-1) and axon-specific molecules, such as Map-2 and α-tubulin, without affecting glial cell marker expression (S-100, GFAP, Olig2) (Figure 4C). Accordingly, the gain of miR-107 expression by miR-107-mimic induced a decrease of neuroblast- and axon-specific marker expression (Figure 4D), assessing that, in vitro, miR-107 acts as a neuronal differentiation regulator during zebrafish neurogenesis11.
Figure 1: Schematic Representation of Protocol Steps. The procedures and associated timing include the dissection of either the whole brain or the telencephalic, tectal and cerebellar regions of the adult zebrafish brain (A, B), the obtention of a single cell suspension (C), the generation of floating neurospheres (D) and the differentiation of neurospheres (E).
Figure 2: Forming Zebrafish Brain-derived Neurospheres. (A–C) Representative phase contrast images of whole brain-derived primary floating neurospheres observed at day 1 (DiV1, A), day 3 (DiV3, B) and day 4 (DiV4, C). (D) Chart representing the relative number of neurospheres at Passages 1 and 2 compared to the neurosphere number at Passage 0. After Passage 2, neurospheres formation was drastically decreased. Scale bar: 25 µm.
Figure 3: Differentiation of Zebrafish Brain-derived Neurospheres. (A–C, E) Phase contrast images of whole brain-derived neurospheres cultured in the Z-differentiation medium during 1 (A, DiVd1), 3 (B, DiVd3) and 4 (C and D, DiVd4) days. (E) Dorsal view of the whole brain of a 12 month old Tg(GFAP:DsRed) zebrafish. The telencephalon (Tel), tectum (Tec) and cerebellum (Cer) were dissected and collected as shown. (D) Images of DiVd4 neurospheres derived from the tectum, telencephalon and cerebellum at Passage 0 (P0), 1 (P1) and 2 (P2). Scale bar: 25 µm.
Figure 4: Analysis of Neurospheres Formed following MiR107 Manipulation. (A) Phase contrast images showing Div4d neurospheres treated at Div4 with the indicated oligonucleotides. Black boxes in the top panels indicate the area magnified in the bottom panels. (B) Top chart represents the quantification of the number of neurospheres formed with, or without, miR107. Neurospheres are subgrouped by their size (20-30 µm, 31-50 µm, >51 µm in diameter). Bottom chart indicates the quantification of the axonal projections from neurospheres treated and sub grouped as above. (C, D) qRT-PCR expression analysis of indicated genes by Div4d neurospheres previously treated with indicated oligonucleotides at Div4. Data represent the mean ± SEM, * p <0.05, n = 3. Scr: scramble. Scale bar: 25 µm.
Problem | Possible reason | Solution |
Recovery of too many dead cells | Time delay in preparing the brain before enzymatic treatment | Make sure the dissection set up and media are ready before sacrificing the fish (also check sterility, temperature) |
Stringent papain treatment | Mechanical dissociation needs to be delicate enough to generate a live single cell suspension, but strong enough to avoid leaving behind too many clumps of tissue. Respect the recommended times and temperatures for incubation/centrifugation periods | |
Neurospheres do not appear or grow poorly | Incorrect temperature | Check that incubator set at 30 °C is providing the correct temperature. |
Growing spheres removed with debris | For each well, the aspiration of debris has to be performed well on top of the medium. Avoid entering into the medium with your pipet | |
The integrity of some reagents (B27 supplement, EGF, FGF) is weakened | This integrity constitutes limiting factors in cell growth. Check batch number, and the way samples were preserved. Avoid thaw/refreeze cycles of any sampled reagent used in culture | |
Presence of single cells | Mode of transfer/expansion of neurospheres is too harsh | This step is an expansion/dilution step because too many spheres are formed in the well. Avoid harsh sphere collection during transfer to prevent neurosphere dissociation into single cells |
Absence of cells on matrigel | Matrigel was not properly thawed/diluted | Matrigel from -20 °C needs at least 30 min at 4 °C to thaw and remains viscous Pipet carefully |
No adhesion on matrigel | The volume of cell suspension has to be small enough to allow cell deposition on matrigel coat | |
Allow more time for cell deposition (up to 2 hr if larger volumes are used) | ||
Fresh differentiation medium too cold | When replacing the cell-attachment medium, the differentiation medium needs to be warmed up at 30 °C to prevent thermal shock on the deposited cells | |
Poor nucleofection | Dead cells | Make sure that you do not generate air bubbles while performing nucleofection. Use high quality DNA vectors by using Maxi-preparations. At least 1 – 2 hr after nucleofection, replace culture medium using either fresh Z-differentiation condition medium or Z-condition medium. |
Few positive neurospheres | Neurospheres of varying sizes can lead to poor nucleofection. Using neurospheres at DiV2 and DiV3 are ideal for nucleofection. Density of cells should not exceed 4 x 103 neurospheres ml-1 in a 100 ml reaction. |
Table 1: Troubleshooting Advice Listing, for Each Step of the Protocol, the Possible Issues and the Solutions to Overcome Them.
The main aim of this protocol is to isolate and culture adult zebrafish brain-derived neurospheres for studying the cellular and molecular features of neural stem/progenitor cells. Here, we report how to select multipotent neural cells and generate the three neural cell types, i.e., astrocytes, neurons and oligodendrocytes, from the adult zebrafish brain. The protocol is highly significant since a reproducible neurosphere-forming assay had not been established in the zebrafish so far.
A few critical steps in the protocol need to be respected and have been recapitutaled in the troubleshooting advice (Table 1). First, cell death occurs during both the dissection of the adult zebrafish brain and the single cell suspension procedure. To limit the extend of cell death, it is essential to use clean and sharp tools as well as to strictly respect the timing and temperature of incubation recommended in the present protocol. Secondly, neurosphere culture should be performed with freshly prepared media and with a careful pipetting technique. Third, cell density recommendations should be followed to obtain reliable renewal or differentiation of neurosphere cells. With this in mind, anyone skilled in cell-culture techniques should be able to use the protocol and carry out the isolation, culture and gene manipulation of adult zebrafish brain-derived neurospheres.
The sphere-forming assays in the zebrafish is suffering from the same limitations previously described in mammalian species4: 1) the behavior of neural stem/progenitor cells is altered following their isolation from their natural brain niche; 2) neurospheres are not a homogeneous population of stem cells, but include stem cells, progenitor cells as well as post-mitotic differentiated cells. It is moreover worth noting that our protocol generates aclonal neurosphere cultures. The cell density of cultures is a critical parameter in sphere-forming assays since it determines clonality, i.e., whether the culture is clonal, semi-clonal or aclonal. Clonal conditions allow to accurately characterize and quantify the different pools of stem and progenitor cells present in culture. We have not been able to perform cell clonality assays so far and our culture conditions still need more optimization before we can discriminate neural stem cells from other progenitor cell pools.
Zebrafish neurosphere cultures can be used for a large range of experiments. They allow gene expression analysis as well as manipulation of gene expression during neurogenesis as illustrated by our study assessing miR-107 function in the tissue specific determination of neural cell fate (Figure 4 and 11). Additional applications include genome editing strategies, such as the CRISPR/Cas9 system, in order to test the role of neural stem/progenitor genes in neurogenesis and brain repair13. Finally, our protocol shows that zebrafish neurospheres can be derived from different brain regions opening the possibility to study region-specific features of neurons and glia cells and to explore the cellular and molecular basis of neural cell heterogeneity in different ventricular domains of the zebrafish brain14.
The authors have nothing to disclose.
The authors thank Guillermina Hill-Teran and Marie-Elise Schwartz for assistance. This work was supported by grants from the National Institutes of Health (5R00HL105791 to S.N.) and from the Alzheimer (NIRP 12-259162). This work was also supported by Institut National de la Santé et de la Recherche Médicale (CFC and JLT), Agence Nationale de la Recherche (13-BSV4-0002-01 (JLT), NIH (1R01EB016629-01A1 (JLT), Connecticut Stem Cell Research Fund (13-SCA-Yale-04 (JLT).
DPBS 1X | Life Technologies | 14190-144 | |
DMEM/F12 1X | Life Technologies | 11330-032 | |
L-Cysteine hydrochloride monohydrate | Sigma | C6852-25g | |
B-27 | Life Technologies | 17504-044 | |
N-2 | Life Technologies | 17502-048 | N-2 supplement (100x) liquid |
HEPES | Life Technologies | 15630 | 1M |
D-(+)-Glucose 45% | Sigma | G8769 | |
Penicillin-streptomycin | Life Technologies | 15140-122 | |
Fetal Bovine Serum | Life Technologies | 16000044 | |
Human FGF-basic | Peprotech | 100-18B | |
Human EGF | Peprotech | AF-100-15 | |
Insulin | Sigma | I5500-50 mg | |
DNAse | Sigma | DN25-10mg | |
Papain | Worthington Biochemical Corporation | LS003126 | |
Matrigel | Becton Dickinson | 356234 | |
PFA | TCI | P0018 | |
PBS | AmericanBio | AB11072-04000 | |
Tricaine MS-222 | Sigma | A5040 | stock solution of 4 mg/ml. |
Trycold gel | Sigma | TGP8 | gel pack |
Amaxa Basic Nucleofector Kit | Lonza | VPI-1004 | |
Trypan blue stain | Life Technologies | 15250061 |