Summary

Isolement et caractérisation de neutrophiles avec des propriétés anti-tumorales

Published: June 19, 2015
doi:

Summary

Neutrophils play an important role not only in host defense against invading microorganisms, but are also involved in the immune surveillance of tumor cells. Here, we describe techniques related to the isolation of neutrophils with anti-tumor properties and methods for monitoring anti-tumor neutrophil function in vitro and in vivo.

Abstract

Les neutrophiles, les plus abondants de tous les globules blancs dans la circulation humaine, jouent un rôle important dans la défense de l'hôte contre les micro-organismes envahissants. De plus, les neutrophiles jouent un rôle central dans la surveillance immunitaire des cellules tumorales. Ils ont la capacité de reconnaître des cellules tumorales et induire la mort des cellules tumorales, soit par un mécanisme de contact cellule-dépendant impliquant le peroxyde d'hydrogène ou par cytotoxicité à médiation cellulaire dépendante des anticorps (ADCC). Les neutrophiles ayant une activité anti-tumeur peut être isolé à partir du sang périphérique de patients atteints de cancer et des souris porteuses de tumeurs. Ces neutrophiles sont appelés neutrophiles tumorales entraînées (RTE) pour les distinguer des neutrophiles de sujets en bonne santé ou de souris naïves qui montrent pas d'activité cytotoxique significative de la tumeur. En comparaison avec d'autres globules blancs, des neutrophiles montrent flottabilité différente ce qui rend possible l'obtention d'un> 98% de la population de neutrophiles pur lorsqu'il est soumis à un gradient de densité. Cependant, en pluspour la population de neutrophiles à haute densité normale (HDN), chez les patients atteints de cancer, chez des souris porteuses de tumeurs, ainsi que dans des conditions inflammatoires chroniques, les populations de neutrophiles basse densité distincts (LDN) figurent dans la circulation. LDN co-purifient avec la fraction mononucléaire et peut être séparé à partir des cellules mononucléaires en utilisant soit des stratégies de sélection positive ou négative. Une fois que la pureté des neutrophiles isolés est déterminée par cytométrie de flux, ils peuvent être utilisés pour in vitro et in vivo des essais fonctionnels. Nous décrivons des techniques de surveillance de l'activité anti-tumorale de cellules neutrophiles, de leur capacité à migrer et à produire des espèces réactives de l'oxygène, ainsi que le suivi de leur capacité de phagocytose ex vivo. Nous décrivons en outre des techniques d'étiqueter les neutrophiles pour le suivi in vivo, et de déterminer leur capacité anti-métastatique in vivo. Toutes ces techniques sont essentielles pour comprendre comment obtenir et caractériser les neutrophiles avec anti-tumeurfonction.

Introduction

Neutrophils were initially characterized as the innate immune cells which serve as first line defense against invading microorganisms. Today it is known that neutrophils have more far-reaching functions, being involved in mounting adaptive immune responses against foreign antigens1,2, regulating hematopoiesis3, angiogenesis4 and wound healing5. In addition, neutrophils may affect tumor growth and metastatic progression by virtue of their pro- and anti-tumor activities6,7. Neutrophils are characterized by a polymorphic segmented nucleus (hence termed polymorphonuclear (PMN) leukocytes) and contain at least three distinct subclasses of granules as well as secretory vesicles8 (Figure 1A-C).

Neutrophils possess high phagocytic capacity and high NADPH oxidase activity critical for microbial elimination, and secrete a wide range of chemokines important for attraction of additional neutrophils and other immune cells to the site of inflammation8,9. Neutrophils are characterized by the expression of a large amount of surface receptors including Toll-like receptors (TLRs), C-type Lectin Receptors (CLRs), complement receptor 3 (CD11b/CD18) and other adhesion molecules (e.g., L-selectin, LFA-1, VLA-4 and carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3/CD66b)), chemokine receptors (e.g., CXCR1, CXCR2, CCR1, CCR2), chemoattractant receptors (e.g., PAFR, LTB4R and C5aR), cytokine receptors (e.g., G-CSFR, IL-1R, IL-4R, IL-12R, IL-18R, TNFR), formyl-peptide receptors (e.g., FPR1-3), and Fc receptors (e.g., CD16 (FcγRIII), CD32 (FcγRII), and CD64 (FcγRI)10. In mice, neutrophils are usually identified as CD11b+Ly6G+, whereas human neutrophils are identified using the CD11b, CD15, CD16 and CD66b leukocyte markers. It is also generally accepted to stain for the granule proteins myeloperoxidase (MPO) and neutrophil elastase (NE) for detection of neutrophils in tissues.

It is still unclear whether the diverse functions of neutrophils are mediated by the same cell or by distinct cell sub-populations. Accumulating data suggest for the presence of a heterogenic neutrophil population that exhibits a high degree of plasticity affected by pro-inflammatory stimuli and the microenvironment11,12. Fridlender et al.13 have grossly divided the neutrophils in cancer into two major sub-populations termed N1 with anti-tumor properties and N2 with pro-tumor properties. In cancer, as well as in chronic inflammation, there is an additional sub-population composed of granulocytic myeloid-derived suppressor cells (G-MDSCs) that suppress T cell responses14. G-MDSCs are considered to be immature myeloid cells characterized by a CD11b+Ly6ClowLy6Ghi phenotype in mice15, while having a CD15+/CD16low phenotype in human16. G-MDSCs express higher levels of arginase and myeloperoxidase, while lower levels of cytokines and chemokines than normal circulating neutrophils. They are less phagocytic and migratory, but produce higher levels of ROS15,17,18. In the present paper we will describe some basic methodologies for isolation and characterization of neutrophils with anti-tumor properties.

While neutrophils constitute the largest population of all white blood cells in the human circulation (45 – 70%; 1,800 – 6,000/μl), in mice, under normal conditions, they are rather sparse (10 – 15%; 300 – 500/μl). The neutrophil count increases steadily upon inflammation and occasionally in cancer, which represents a state of chronic inflammation7. Neutrophils develop from multipotent common myeloid precursor (CMP) cells in the bone marrow, through a differentiation process passing the stages of myeloblasts (MB), promyelocytes (PM), myelocytes (MC), metamyelocytes (MM) and band cells (BC)8. The mature, post-mitotic neutrophils may remain within the bone marrow for 4 – 7 days before they are released to the circulation8. Neutrophil turnover in the blood is usually rapid with an average half-life of 6 – 12 hrs, which may be prolonged under inflammatory conditions. Unstimulated neutrophils have limited anti-tumorigenic activity, a feature that can be acquired by exposing the naïve neutrophils to the chemokines IL-8 (CXCL2), CCL2, CCL5 and CXCL56,19 or artificially, by exposing them to the phorbol ester phorbol 12-myristate 13-acetate (PMA)6.

The short half-life of blood neutrophils together with the low number of neutrophils (~ 3 – 5 x 105) achieved from 1 ml blood of a naïve 6 – 8 week old mouse, have made it difficult to explore the function of circulating mouse neutrophil in vitro. To overcome this difficulty, other sources have been used. For instance, large numbers of neutrophils may be obtained from the bone marrow20 or the peritoneum following the induction of sterile inflammation (e.g., after intraperitoneal injection of thioglycollate broth or Zymosan A). It should be noted that neutrophils obtained from the peritoneal cavity do not exert any anti-tumorigenic activity (unpublished observation).

Granot et al.6 observed that BALB/c mice inoculated orthotopically with the mouse 4T1 breast carcinoma cell line develop neutrophilia which aggravates with tumor progression6 (Figure 2A), such that 20 – 40 million blood neutrophils can be easily isolated from 1 ml blood 3 – 4 weeks post-tumor inoculation. These neutrophils have acquired anti-tumor activities, and have accordingly been coined tumor-entrained neutrophils (TEN), in order to distinguish them from naïve neutrophils6 (Figure 2B). While high-density neutrophils (HDN, Figure 1A) are highly anti-tumorigenic, low-density neutrophils (LDN, Figure 1B) generated in the context of cancer are not21. Also, high-density neutrophils from the bone marrow and spleen of tumor-bearing mice have anti-tumor activity (unpublished data). It should be noted that with tumor progression the spleen becomes gradually enlarged (splenomegaly), with increasing amounts of neutrophils.

It should be noted that TEN are also generated in other models of cancer including both spontaneous (MMTV-PyMT and MMTV-Wnt1 mammary tumors and k-Ras driven lung tumors) and injected (AT-3 (MMTV-PyMT) and E0771 breast carcinoma cells, LLC Lewis lung carcinoma cells and B16-F10 melanoma cells). However, the extent of neutrophil mobilization in these tumor models is far less than of 4T1-inoculated mice, reaching 5 – 10 x 106 neutrophils in 1 ml blood after 3 weeks.

Protocol

Animals: 5-7 weeks old BALB/c mice are purchased from Harlan (Israel). All experiments involving animals were approved by the Hebrew University’s Institutional Animal Care and Use Committee (IACUC). Human samples: Collection of blood from cancer patients and healthy volunteers was approved by Hadassah Medical Center Institutional Review Board (IRB).   1. Induction of Neutrophils with Anti-tumor Properties in vivo Using a Breast Cancer Mouse Model. …

Representative Results

In a recent study we identified an anti-metastatic function for neutrophils6. Neutrophils from tumor-bearing mice acquire a cytotoxic phenotype and have the capacity to kill tumor cells6. This is in contrast to neutrophils from naïve mice that have no significant anti-tumor effect6. Several of the techniques described in the Protocol Section have been used for studying anti-tumor neutrophil function in vitro and in vivo6. Tumor…

Discussion

Neutrophils are the most abundant of all white blood cells and are the first responders in cases of infection and inflammation. As such, they are highly sensitive to external cues and are easily activated. In addition, neutrophils have a very short half-life and a rapid turnover. Together, these characteristics raise several difficulties in working with neutrophils, such that unique experimental strategies are required. For example, there are several neutrophil purification strategies, each with its own pros and cons.</p…

Divulgations

The authors have nothing to disclose.

Acknowledgements

ZG is supported by grants from the I-CORE Program of The Israel Science Foundation (Grant No. 41/11), the Abisch-Frenkel Foundation, the Rosetrees Trust, the Israel Cancer Research Foundation (ICRF – Research Career Development Award) and the CONCERN foundation. ZGF is supported by grants from the Israel Cancer Research Foundation (ICRF – Research Career Development Award), Chief Scientist of the Israel Ministry of Health and the Israel Lung Association.

Materials

CELL LINES
Mouse 4T1 breast carcinoma cells ADCC CRL-2539 Growth medium: DMEM + 10 % heat-inactivated FBS
PLASTIC WARES AND EQUIPMENTS
24-well Tissue Culture Plate  Falcon 353047 Sterile
100 mm Tissue Culture Plate  Corning 430167 Sterile
25 cm2 Tissue Culture Flask Nunc 156340 Sterile
90 mm Bacterial Grade Culture Dish  Miniplast, Ein Shemer, Israel 20090-01-017 Sterile
15 ml Sterile Conical Centrifuge Tube  Miniplast, Ein Shemer, Israel 835015-40-111 Sterile
50 ml Sterile Conical Centrifuge Tube  Miniplast, Ein Shemer, Israel 835050-21-111 Sterile
Falcon 12×75 mm Round-Bottom Polystyrene Tube  Becton Dickinson 352058 Sterile
Millicell 24 Migration Plate with a pore size of 5μm  Merck Millipore PSMT010R1 Sterile
White 96-Flat-Bottom Well Plate  Costar 3917 Sterile
Cell Strainer (40 mm)  BD Falcon 352340 Sterile
20G 1.5" Needle BD Microlance 3  301300 Sterile
23G 1" Needle  BD Microlance 4 300800 Sterile
25Gx5/8" Needle  BD Microlance 5 300600 Sterile
0.3 ml Syringe with a 30Gx8mm Needle BD Micro-Fine Plus Demi 320829 Sterile
9 mm Clips  BD, AutoClip  427631 Sterile
EasySep Magnet  STEMCELL Technologies 18000
MACS LS Separation Column  Miltenyi Biotech 130-042-201 Sterile
MidiMACS Separator Magnet Miltenyi Biotech 130-042-302
MACS MultiStand Miltenyi Biotech 130-042-303
Microscope Glass Slide  Menzel-Gläser Superfrost  Plus Thermo J1800AMNZ
Orbital Shaker  Sky line, ELMI S-3.02.10L
Plate Reader  TECAN InfiniteF200Pro
POWDER
Bovine serum albumin (BSA), fraction V Sigma A7906
Bromodeoxyuridine (BrdU)  BD Pharmingen 550891 Sterile
CFSE (5-(and 6-)-Carboxyfluorescein diacetate, succinimidyl ester) Molecular Probes C1157
Dextran T500 Sigma 31392
Heparin sodium salt from porcine intestinal mucosa  Sigma H3149
Sodium azide (NaN3) Sigma S8032 Highly toxic, handle with care
Thioglycollate powder  Difco 225650
Zymosan A Sigma Z4250
MEDIA AND SUPPLEMENTS
Dulbecco's modified Eagle medium (DMEM) Sigma D5796 Sterile
Opti-MEM® I reduced serum medium  Life Technologies 31985062 Sterile
Roswell Park Memorial Institute (RPMI)-1640 medium Sigma R8758 Sterile
Foetal bovine serum (FBS), heat-inactivated Sigma F9665 Sterile
L-Glutamine Biological Industries, Beth HaEmek, Israel 03-020-1A Sterile
Sodium pyruvate Biological Industries, Beth HaEmek, Israel 03-042-1B Sterile
Penicillin Streptomycin x1000 solution Biological Industries, Beth HaEmek, Israel 03-031-5 Sterile
Phosphate buffered saline (PBS) without Mg2+ and Ca2+  Biological Industries, Beth HaEmek, Israel 02-023-1 Sterile
PBSx10 without Ca2+ and Mg2+  Biological Industries, Beth HaEmek, Israel 02-023-5A Sterile
HPLC grade water  J.T. Baker 4218-03 Autoclave
SOLUTIONS
ACK – Ammonium-Chloride-Potassium Life Technologies  A10492-01
Bromodeoxyuridine (BrdU) solution (10 mg/ml) in PBS Dissolve 10 mg of BrdU in 1 ml PBS and sterile filter.
CFSE, 5 mM in DMSO Dissolve 2.8 mg of CFSE in 1 ml DMSO. Divide into 10 ml aliquots in sterile 200 ml tubes and store in the dark at -20oC.
Eosin Y solution Sigma HT110-2-32
Hanks' balanced salt solution Biological Industries, Beth HaEmek, Israel 02-016-1A Sterile
Heparin, 20 mg/ml in PBS Dissolve 100 mg Heparin in 5 ml sterile PBS, and sterile filter through a 0.2 mm filter. 
Histopaque-1119  Sigma 11191 Sterile filter through a 0.2 mm filter.
Histopaque-1077  Sigma 10771 Sterile filter through a 0.2 mm filter.
 Luciferase cell culture lysis buffer x5 Promega E153A Dilute 1:5 in sterile water just before use.
Luciferase assay solution Promega E1501 Contains luciferase assay substrate powder (E151A) and luciferase assay buffer (E152A)
Mayer's Hematoxylin solution  Sigma MHS-32
PBS+0.5% BSA Dissolve 2.5g BSA in 500 ml PBS, and sterile filter through a 0.2 mm filter.
PBS+1% BSA Dissolve 1g BSA in 100 ml PBS, and sterile filter through a 0.2 mm filter.
5x PBS with 2.5% BSA                Dissolve 12.5g BSA in a mixture of 250 ml sterile HPLC-grade water                     and 250 ml PBSx10, and sterile filter through a 0.2 mm filter.
PBS containing 0.5% BSA and 2 mM EDTA         Dissolve 250 mg BSA in 50 ml sterile PBS  and add 200 ml of 0.5M EDTA pH 8.0, sterile filter through a 0.2 mm filter.
FACS buffer (PBS containing 0.5% BSA, 2 mM EDTA and 0.02% NaN3)              Dissolve 250 mg BSA in 50 ml sterile PBS  and add 200 ml of 0.5M EDTA pH 8.0 and 500 ml of 2% NaN3, sterile filter through a 0.2 mm filter.
Saline (0.9% NaCl) Dissolve 9 g NaCl in 1000 ml ddw, autoclave
0.2% NaCl solution Dissolve 2 g NaCl in 1000 ml ddw, autoclave
1.6% NaCl solution Dissolve 16 g NaCl in 1000 ml ddw, autoclave
2 % Sodium azide Dissolve 1g sodium azide in 50 ml sterile ddw, keep at 4oC. Highly toxic.
3% Thioglycollate solution                                        Dissolve 3 g of thioglycollate powder in 100 ml ddw.                                        Boil until solution becomes yellow and autoclave.
Trypan blue solution (0.4%) Sigma T8154 Dilute 1:10 in PBS to get a 0.04% solution.
Trypsin solution B  Biological Industries, Beth HaEmek, Israel 03-046-1 Sterile
1 mg/ml Zymosan A                    Resuspend 1 mg Zymosan A  in 1 ml sterile PBS in an Eppendorf tube.                            Vortex vigorously and incubate the tube at 37 oC for 30 min. Do not autoclave.            Prepare the solution freshly before use. 
KITS
EasySep PE selection kit STEMCELL Technologies 18557
EasySep PE selection cocktail  STEMCELL Technologies 18151
the EasySep magnetic nanoparticles  STEMCELL Technologies 18150
Anti-Ly6G mouse MicroBead Kit Miltenyi Biotec 130-092-332
EasySep Mouse Neutrophil Enrichment Kit STEMCELL Technologies 19762
EasySep Human Neutrophil Enrichment Kit STEMCELL Technologies 19257
FITC BrdU flow kit BD Pharmingen  559619
MACS Neutrophil isolation kit Miltenyi Biotec 130-097-658
Phagocytosis Assay Kit  Cayman Chemical Company  500290
ANTIBODIES
FcR blocking antibody  Biolegend 101302
Purified rat anti-Ly6G antibody  BD Pharmingen  551459 Clone 1A8
PE-conjugated rat anti-mouse Ly6G antibody  Biolegend 127608 Clone 1A8
FITC-conjugated rat anti-mouse Ly6G BD Pharmingen  551460 Clone 1A8
PerCP-Cy5.5 rat anti-mouse Ly6G  TONBO Biosciences 65-1276 Clone 1A8
violetFluor 450-conjugated rat anti-mouse Ly6G  TONBO Biosciences 75-1276 Clone 1A8
FITC-conjugated rat anti-mouse CD11b BD Pharmingen  553310 Clone M1/70
FITC-conjugated rat anti-mouse Ly-6G and Ly-6C (GR-1) BD Pharmingen  553127 Clone RB6-8C5
PE-conjugated rat anti-mouse CD45 BD Pharmingen  553081 Clone 30-F11
FITC-conjugated rat anti-mouse F4/80  Abcam ab60343 Clone BM8
FITC-conjugated mouse anti-human CD66b  Biolegend 305103 Clone G10F5
Purified rat isotype control antibody (IgG2a, k)  BD Pharmingen  553927 Clone R35-95
LEAF purified Armenian hamster anti-mouse CD3e antibody BioLegend 100314 Clone 145-2C11

References

  1. Tangye, S. G., Brink, R. A helping hand from neutrophils in T cell-independent antibody responses. Nat Immunol. 13, 111-113 (2012).
  2. Mantovani, A., Cassatella, M. A., Costantini, C., Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 11, 519-531 (2011).
  3. Pruijt, J. F., et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A. 99, 6228-6233 (2002).
  4. Tecchio, C., Cassatella, M. A. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy. 99, 123-137 (2014).
  5. Liu, M., et al. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PloS one. 9, e90613 (2014).
  6. Granot, Z., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20, 300-314 (2011).
  7. Sionov, R. V., Fridlender, Z. G., Granot, Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. , (2014).
  8. Borregaard, N. Neutrophils, from marrow to microbes. Immunity. 33, 657-670 (2010).
  9. Yamashiro, S., et al. Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses. J Leukoc Biol. 69, 698-704 (2001).
  10. Futosi, K., Fodor, S., Mocsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 17, 638-650 (2013).
  11. Scapini, P., Cassatella, M. A. Social networking of human neutrophils within the immune system. Blood. 124, 710-719 (2014).
  12. Fridlender, Z. G., et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PloS one. 7, e31524 (2012).
  13. Fridlender, Z. G., et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2. TAN. Cancer Cell. 16, 183-194 (2009).
  14. Talmadge, J. E., Gabrilovich, D. I. History of myeloid-derived suppressor cells. Nat Rev Cancer. 13, 739-752 (2013).
  15. Youn, J. I., Nagaraj, S., Collazo, M., Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181, 5791-5802 (2008).
  16. Choi, J., et al. CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol. 33, 121-129 (2012).
  17. Brandau, S., et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 89, 311-317 (2011).
  18. Pillay, J., Tak, T., Kamp, V. M., Koenderman, L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 70, 3813-3827 (2013).
  19. Lopez-Lago, M. A., et al. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene. 32, 1752-1760 (2013).
  20. Boxio, R., Bossenmeyer-Pourie, C., Steinckwich, N., Dournon, C., Nusse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J Leukoc Biol. 75, 604-611 (2004).
  21. Sagiv, J., et al. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports. , (2015).

Play Video

Citer Cet Article
Sionov, R. V., Assi, S., Gershkovitz, M., Sagiv, J. Y., Polyansky, L., Mishalian, I., Fridlender, Z. G., Granot, Z. Isolation and Characterization of Neutrophils with Anti-Tumor Properties. J. Vis. Exp. (100), e52933, doi:10.3791/52933 (2015).

View Video