Neutrophils play an important role not only in host defense against invading microorganisms, but are also involved in the immune surveillance of tumor cells. Here, we describe techniques related to the isolation of neutrophils with anti-tumor properties and methods for monitoring anti-tumor neutrophil function in vitro and in vivo.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Neutrophils were initially characterized as the innate immune cells which serve as first line defense against invading microorganisms. Today it is known that neutrophils have more far-reaching functions, being involved in mounting adaptive immune responses against foreign antigens1,2, regulating hematopoiesis3, angiogenesis4 and wound healing5. In addition, neutrophils may affect tumor growth and metastatic progression by virtue of their pro- and anti-tumor activities6,7. Neutrophils are characterized by a polymorphic segmented nucleus (hence termed polymorphonuclear (PMN) leukocytes) and contain at least three distinct subclasses of granules as well as secretory vesicles8 (Figure 1A-C).
Neutrophils possess high phagocytic capacity and high NADPH oxidase activity critical for microbial elimination, and secrete a wide range of chemokines important for attraction of additional neutrophils and other immune cells to the site of inflammation8,9. Neutrophils are characterized by the expression of a large amount of surface receptors including Toll-like receptors (TLRs), C-type Lectin Receptors (CLRs), complement receptor 3 (CD11b/CD18) and other adhesion molecules (e.g., L-selectin, LFA-1, VLA-4 and carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3/CD66b)), chemokine receptors (e.g., CXCR1, CXCR2, CCR1, CCR2), chemoattractant receptors (e.g., PAFR, LTB4R and C5aR), cytokine receptors (e.g., G-CSFR, IL-1R, IL-4R, IL-12R, IL-18R, TNFR), formyl-peptide receptors (e.g., FPR1-3), and Fc receptors (e.g., CD16 (FcγRIII), CD32 (FcγRII), and CD64 (FcγRI)10. In mice, neutrophils are usually identified as CD11b+Ly6G+, whereas human neutrophils are identified using the CD11b, CD15, CD16 and CD66b leukocyte markers. It is also generally accepted to stain for the granule proteins myeloperoxidase (MPO) and neutrophil elastase (NE) for detection of neutrophils in tissues.
It is still unclear whether the diverse functions of neutrophils are mediated by the same cell or by distinct cell sub-populations. Accumulating data suggest for the presence of a heterogenic neutrophil population that exhibits a high degree of plasticity affected by pro-inflammatory stimuli and the microenvironment11,12. Fridlender et al.13 have grossly divided the neutrophils in cancer into two major sub-populations termed N1 with anti-tumor properties and N2 with pro-tumor properties. In cancer, as well as in chronic inflammation, there is an additional sub-population composed of granulocytic myeloid-derived suppressor cells (G-MDSCs) that suppress T cell responses14. G-MDSCs are considered to be immature myeloid cells characterized by a CD11b+Ly6ClowLy6Ghi phenotype in mice15, while having a CD15+/CD16low phenotype in human16. G-MDSCs express higher levels of arginase and myeloperoxidase, while lower levels of cytokines and chemokines than normal circulating neutrophils. They are less phagocytic and migratory, but produce higher levels of ROS15,17,18. In the present paper we will describe some basic methodologies for isolation and characterization of neutrophils with anti-tumor properties.
While neutrophils constitute the largest population of all white blood cells in the human circulation (45 – 70%; 1,800 – 6,000/μl), in mice, under normal conditions, they are rather sparse (10 – 15%; 300 – 500/μl). The neutrophil count increases steadily upon inflammation and occasionally in cancer, which represents a state of chronic inflammation7. Neutrophils develop from multipotent common myeloid precursor (CMP) cells in the bone marrow, through a differentiation process passing the stages of myeloblasts (MB), promyelocytes (PM), myelocytes (MC), metamyelocytes (MM) and band cells (BC)8. The mature, post-mitotic neutrophils may remain within the bone marrow for 4 – 7 days before they are released to the circulation8. Neutrophil turnover in the blood is usually rapid with an average half-life of 6 – 12 hrs, which may be prolonged under inflammatory conditions. Unstimulated neutrophils have limited anti-tumorigenic activity, a feature that can be acquired by exposing the naïve neutrophils to the chemokines IL-8 (CXCL2), CCL2, CCL5 and CXCL56,19 or artificially, by exposing them to the phorbol ester phorbol 12-myristate 13-acetate (PMA)6.
The short half-life of blood neutrophils together with the low number of neutrophils (~ 3 – 5 x 105) achieved from 1 ml blood of a naïve 6 – 8 week old mouse, have made it difficult to explore the function of circulating mouse neutrophil in vitro. To overcome this difficulty, other sources have been used. For instance, large numbers of neutrophils may be obtained from the bone marrow20 or the peritoneum following the induction of sterile inflammation (e.g., after intraperitoneal injection of thioglycollate broth or Zymosan A). It should be noted that neutrophils obtained from the peritoneal cavity do not exert any anti-tumorigenic activity (unpublished observation).
Granot et al.6 observed that BALB/c mice inoculated orthotopically with the mouse 4T1 breast carcinoma cell line develop neutrophilia which aggravates with tumor progression6 (Figure 2A), such that 20 – 40 million blood neutrophils can be easily isolated from 1 ml blood 3 – 4 weeks post-tumor inoculation. These neutrophils have acquired anti-tumor activities, and have accordingly been coined tumor-entrained neutrophils (TEN), in order to distinguish them from naïve neutrophils6 (Figure 2B). While high-density neutrophils (HDN, Figure 1A) are highly anti-tumorigenic, low-density neutrophils (LDN, Figure 1B) generated in the context of cancer are not21. Also, high-density neutrophils from the bone marrow and spleen of tumor-bearing mice have anti-tumor activity (unpublished data). It should be noted that with tumor progression the spleen becomes gradually enlarged (splenomegaly), with increasing amounts of neutrophils.
It should be noted that TEN are also generated in other models of cancer including both spontaneous (MMTV-PyMT and MMTV-Wnt1 mammary tumors and k-Ras driven lung tumors) and injected (AT-3 (MMTV-PyMT) and E0771 breast carcinoma cells, LLC Lewis lung carcinoma cells and B16-F10 melanoma cells). However, the extent of neutrophil mobilization in these tumor models is far less than of 4T1-inoculated mice, reaching 5 – 10 x 106 neutrophils in 1 ml blood after 3 weeks.
Animals: 5-7 weeks old BALB/c mice are purchased from Harlan (Israel). All experiments involving animals were approved by the Hebrew University’s Institutional Animal Care and Use Committee (IACUC). Human samples: Collection of blood from cancer patients and healthy volunteers was approved by Hadassah Medical Center Institutional Review Board (IRB).
1. Induction of Neutrophils with Anti-tumor Properties in vivo Using a Breast Cancer Mouse Model.
NOTE: All steps should be performed using sterile solutions in a laminar airflow (LAF) Bio-Safety cabinet.
2. Neutrophil Isolation
3. Enrichment of Blood Neutrophils Using Magnetic Beads
4. Cytological Staining of Neutrophils
5. Determination of the Purity of Neutrophils by Flow Cytometry.
6. Follow Neutrophil Gate in vivo
7. In vitro Luciferase Assay to Monitor the Anti-tumor Activity of Isolated Neutrophils.
NOTE: To assess the contribution of neutrophils to metastatic seeding, neutrophils may be depleted as described in protocol 8.1. For effective depletion administer neutrophil-depleting antibodies starting on day 7 post-tumor engraftment.
8. Anti-metastatic Activity of Neutrophils in a Breast Cancer Mouse Model.
9. Suppression of T Cell Proliferation by Neutrophils from Tumor-bearing Mice.
10. Neutrophil Migration Assay
11. Monitoring Neutrophil Production of Reactive Oxygen Species (ROS).
In a recent study we identified an anti-metastatic function for neutrophils6. Neutrophils from tumor-bearing mice acquire a cytotoxic phenotype and have the capacity to kill tumor cells6. This is in contrast to neutrophils from naïve mice that have no significant anti-tumor effect6. Several of the techniques described in the Protocol Section have been used for studying anti-tumor neutrophil function in vitro and in vivo6.
Tumor cytotoxic neutrophils can be obtained from tumor-bearing mice6. To achieve this aim, mice were orthotopically injected with 4T1 cells into the left inguinal mammary fat pad (Protocol 1). By day 21 post-tumor inoculation, the primary tumor reached a size of 1 – 2 cm3 (Figure 3 – the tumor is evident in the lower left abdomen). At this time, the mice were euthanized and 1 ml blood was drawn (per mouse) by cardiac puncture (Figure 3). In parallel, blood from a naïve, non-tumor-bearing mouse was drawn. HDN were then purified on a density gradient (Protocol 2.1 and Figure 4) to yield a highly pure (>98%) population of neutrophils. Neutrophil viability was determined by Trypan Blue staining (Protocol 2.1). The neutrophils were then resuspended in optimized reduced serum medium containing 0.5% FBS at 2 x 106 neutrophils/ml.
To test the extent of neutrophil cytotoxicity, we added 105 neutrophils (50 μl from a 2 x 106 neutrophils/ml stock solution) to luciferase expressing 4T1 target cells (5,000 cells/well in 100 μl) in a flat-bottom white 96-well plate (Protocol 7). Following an O/N incubation, the cells were washed in PBS and lysed in passive cell lysis buffer and the luciferase activity in each sample was tested to evaluate the extent of neutrophil cytotoxicity (Figure 2B) (Protocol 7). The luciferase activity correlates with the number of tumor cells surviving and must be compared to the luciferase activity in control wells where tumor cells are cultured alone. To calculate the extent of tumor cell killing we use the following formula: % tumor cell killing = (1 – [luminescence of samples with neutrophils] / [luminescence of control samples]) x 100%. The data is then presented as % of cells killed under different conditions where control cells cultured alone have a killing % = 0. Using these experimental procedures we found that while neutrophils purified from tumor-free mice show no cytotoxicity towards tumor cells (Figure 2B, tumor free), neutrophils purified from tumor-bearing mice show significant cytotoxicity (Figure 2B, tumor bearing).
To test the immune suppressive properties in LDN and HDN we used the T-cell proliferation assay (Protocol 9). We evaluated the number of CD8+ cells in untreated splenocytes and in splenocytes treated with a αCD3 antibody, which were cultured alone and cells that were cultured in the presence of LDN or in the presence of HDN (Figure 5A-D). Note the dramatic increase in CD8+CFSE+ cells following anti-CD3 stimulation (compare upper right panel in A and B) the dramatic inhibitory effect of suppressive LDN (compare upper right panel in B and C) and the lack of inhibitory effect of HDN (panel D). We also evaluated the extent of CFSE retention, as an indication for proliferation. In Figure 5E, the orange curve presents untreated CD8+ cells, the blue curve CD8+ cells, treated with αCD3 antibodies, the red curve CD8+ cells stimulated with αCD3 in the presence of LDN and the green curve represents CD8+ cells stimulated with αCD3 in the presence of HDN. Note the leftward shift in the αCD3 treated cells (blue curve) and the αCD3 treated cells cultured with HDN (green curve), which indicate CD8+ cell proliferation.
Figure 1. Neutrophil morphology. Light microscopy image of high-density (A) and low-density neutrophils (B) stained with Hematoxylin and Eosin (H&E) following thin-layer cell preparation. (C) A transmission electron microscopy (TEM) image of a high-density neutrophil. The bar represents 1,000 nm. Please click here to view a larger version of this figure.
Figure 2. Blood neutrophil counts increase with tumor progression and neutrophils acquire a cytotoxic phenotype. (A) The circulating neutrophil number per 1 ml was counted by FACS at various days following tumor cell inoculation in BALB/c mice. The number of circulating CD11b+Ly6G+ neutrophil continuously increases with 4T1 tumor progression. (B) 4T1 breast carcinoma cells were co-cultured with high density neutrophils from either naïve mice (Tumor free) or 4T1 tumor-bearing mice (Tumor bearing) mice, or incubated in medium in the absence of neutrophils (Cont.) at 37 °C for 20 hrs. Neutrophils for tumor bearing mice, but not from tumor free mice, show significant cytotoxicity towards 4T1 tumor cells. Error bars represent ± S.E.M. ** p < 0.01 using a student’s t-test. Please click here to view a larger version of this figure.
Figure 3. Collection of murine blood via cardiac puncture. The mouse was euthanized in an induction chamber under slow CO2 flow. Immediately after the mouse has taken its terminal breath, it is laid on its back and a 1 ml heparinized syringe is inserted at the base of the sternum until reaching the heart. Slowly pull on the plunger to aspirate the blood. Please click here to view a larger version of this figure.
Figure 4. Neutrophil purification from whole blood. (A) 3 ml of 1.077 g/ml sucrose is carefully layered on top of 3 ml 1.119 g/ml sucrose to form a discontinuous gradient. Whole murine blood, diluted in PBS-BSA (0.5%) to a final volume of 6 ml, is then layered on top of the 1.077 g/ml sucrose. (B) Following a 30 min spin at 700 x g with no break, 3 distinct fractions can be observed; R – red blood cells in the pellet, G – the granulocytic fraction containing high-density neutrophils, M – mononuclear fraction containing mononuclear cells and low-density neutrophils. (C) Freshly drawn human blood is mixed with an equal volume of Dextran 500 (3%) and incubated at RT for 30 min. The top fraction containing the white blood cells (buffy coat) is then layered on top of 10 ml 1.077 g/ml sucrose. (D) Following a 30 min spin at 400 x g with no break, 2 distinct fractions may be observed; R+G – pellet containing red blood cells and high-density neutrophils, M – mononuclear fraction containing mononuclear cells and low-density neutrophils. Please click here to view a larger version of this figure.
Figure 5. Suppression of T cell proliferation. Flow cytometry analyses showing the number of CFSE-labeled CD8+ cells cultured in the absence of stimulus (A), following stimulation with αCD3 antibody in the absence (B) or presence of LDN (C) or HDN (D). (E) Histogram presentation of CFSE intensity in CD8+ cells from panels A–D. Please click here to view a larger version of this figure.
Neutrophils are the most abundant of all white blood cells and are the first responders in cases of infection and inflammation. As such, they are highly sensitive to external cues and are easily activated. In addition, neutrophils have a very short half-life and a rapid turnover. Together, these characteristics raise several difficulties in working with neutrophils, such that unique experimental strategies are required. For example, there are several neutrophil purification strategies, each with its own pros and cons.
A critical step in working with neutrophils is their purification from whole blood. Neutrophils may be efficiently purified using either density gradients or antibody-based strategies (positive or negative selection). Our method of choice is the use of density gradients since it yields high numbers of highly purified neutrophils with minimal non-specific activation. However, as we show in a recent study21, with tumor progression neutrophils accumulate in high numbers in the mononuclear low-density fraction. Under these conditions the use of a density gradient provides a highly pure high-density neutrophil fraction, that does not represent the entire circulating neutrophil repertoire, and a low-density neutrophil fraction that is heavily contaminated with other mononuclear cells (lymphocytes and monocytes). Under these circumstances the method of choice is an antibody-based purification, preferably negative selection. The use of antibodies to purify neutrophils yields highly pure neutrophils and better represents the entire circulating neutrophil repertoire. However, we noticed that the longer the neutrophils are incubated with the antibodies, the chances for non-specific activation increase. We therefore suggest that for best results, antibody-based neutrophil purification should be performed as quickly as possible. Antibody-based neutrophil purification is also the method of choice when purifying neutrophil from tissues or tumors.
Regardless of the purification procedure chosen, the purity, viability and functional integrity must be rigorously evaluated. The purity of neutrophils can be determined by flow cytometry using antibodies that reacts with neutrophil surface markers. In mouse, Ly-6G is specific for neutrophils, which are characterized by a CD11b+Ly-6ClowLy-6G+F4/80– phenotype. Human neutrophils do not express a marker analogous to Ly-6G and are often characterized by the expression of CD11b, CD15, CD16, and CD66b. Since neutrophils have Fc receptors, these need to be blocked before immunostaining. Neutrophils can also be distinguished from the other white blood cells by having a higher SSC. Viability should be determined at the end of the purification process (trypan blue, protocol 2.1) and should be consistently greater than 98%. Functional integrity should be determined by purification of neutrophils from naïve mice. These neutrophils are not activated and provide non-cytotoxic control for tumor-entrained neutrophils in a co-culture setting with tumor cells (protocol 7).
The short half-life of blood neutrophils together with the low number of neutrophils (~ 3 – 5 x 105) achieved from 1 ml blood of a naïve 6 – 8 week old mouse, have made it difficult to explore mouse blood neutrophil function in vitro. Neutrophil numbers increase steadily in states of inflammation and occasionally in cancer, which represents a state of chronic inflammation7. Some researchers have tried to find alternative sources for neutrophils, such as the bone marrow20. A high number of mouse neutrophils may be obtained within 4 – 24 hr after an intraperitoneal injection of 1 ml of a 3% thioglycollate broth solution or 1 ml of a 1 mg/ml Zymosan A solution in saline. But these elicited neutrophils do not exert any anti-tumorigenic activity (unpublished observation).
Granot et al.6 observed that BALB/c mice inoculated orthotopically with the mouse 4T1 breast carcinoma develop neutrophilia which aggravates upon time (Figure 2A), such that 20 – 40 million blood neutrophils can be easily isolated from 1 ml blood 3 – 4 weeks post-tumor inoculation. These neutrophils have acquired anti-tumor activities, and have accordingly been termed tumor-entrained neutrophils (TEN), in order to distinguish them from naïve neutrophils (Figure 2B). While high-density neutrophils (HDN) are highly anti-tumorigenic, low-density neutrophils (LDN) generated in the context of cancer are not21. High-density neutrophils from bone marrow and spleen of tumor-bearing mice also have anti-tumor activity (unpublished data). It should be noted that with tumor progression the spleen becomes gradually enlarged (splenomegaly), with increasing amounts of neutrophils.
In order to track the fate of neutrophils following their adoptive transfer, these need to be labeled. Neutrophils can be labeled in vivo by injecting bromodeoxyuridine (BrdU) into tumor-bearing or naïve mice 2 days before isolation. BrdU is an analog of the DNA precursor thymidine which is incorporated into newly synthesized DNA in proliferating cells. In the case of neutrophils, BrdU will be incorporated into proliferating precursor cells that retain BrdU staining when differentiating into mature post-mitotic neutrophils. The incorporated BrdU can be stained using specific anti-BrdU fluorescent antibodies. The BrdU+ cells can then be analyzed by flow cytometry. Another approach is to label the isolated neutrophils with a cell tracker dye such as 5-carboxyfluorescein N-succinimidyl ester (CFSE). CFSE is an ester compound that can pass through viable cell membranes. It has an amino-reactive succinimidyl group which leads to the covalent binding of fluorescein to proteins and other amino groups in the cell and the cell surface. The CFSE-labeled cells can be analyzed by flow cytometry using the 488 nm argon laser. The two labeling techniques differ in the fact that BrdU labeling depends on proliferating precursor cells, and not all circulating neutrophils will be labeled, whereas CFSE will stain all neutrophils. Detection of CFSE is more straightforward than BrdU staining, however BrdU labeling is a good means to follow the immature to mature neutrophil conversion.
We have also described several methods to determine the anti-tumor and anti-metastatic function of neutrophils. These include neutrophil depletion, neutrophil adoptive transfer, tumor neutralization test and lung metastasis seeding assay. Each of these assays accomplishes a specific aspect of anti-tumor neutrophil functions. For instance, Granot et al.6 observed that upon depletion of neutrophils, the number of lung metastases in 4T1 tumor-bearing mice is increased, suggesting for an anti-metastatic role of neutrophils. Upon neutrophil adoptive transfer, the tumor cells are injected intravenously 4 hr before injection of purified HDN. The ability of the tumor cells to form lung and liver metastases are followed in a time-course study using an optical in vivo imaging system. Mice receiving HDN showed fewer metastatic foci than did control mice6. In the tumor neutralization test, the tumor cells are injected subcutaneously with or without HDN, the presence of HDN reduces tumor growth21. In the metastatic seeding assay, GFP-labeled tumor cells are injected intravenously into control or neutrophil-depleted pre-metastatic tumor-bearing mice, and the ability of the GFP-labeled cells to seed in the lung is determined. The lungs of pre-metastatic tumor-bearing mice are characterized by high neutrophil infiltration that prevents tumor cell seeding in the specific organ6. This translates to more metastatic foci in neutrophil-depleted mice compared with control tumor-bearing mice.
The protocols described focus on studying neutrophil function in the context of cancer and provide strategies to evaluate cancer-related neutrophil properties both in vitro and in vivo. However, the neutrophil purification strategies as well as some of the experimental procedures described may be used for studying neutrophil function in a wide range of experimental settings where neutrophil play a critical role (i.e., inflammation and infection).
The authors have nothing to disclose.
ZG is supported by grants from the I-CORE Program of The Israel Science Foundation (Grant No. 41/11), the Abisch-Frenkel Foundation, the Rosetrees Trust, the Israel Cancer Research Foundation (ICRF – Research Career Development Award) and the CONCERN foundation. ZGF is supported by grants from the Israel Cancer Research Foundation (ICRF – Research Career Development Award), Chief Scientist of the Israel Ministry of Health and the Israel Lung Association.
CELL LINES | |||
Mouse 4T1 breast carcinoma cells | ADCC | CRL-2539 | Growth medium: DMEM + 10 % heat-inactivated FBS |
PLASTIC WARES AND EQUIPMENTS | |||
24-well Tissue Culture Plate | Falcon | 353047 | Sterile |
100 mm Tissue Culture Plate | Corning | 430167 | Sterile |
25 cm2 Tissue Culture Flask | Nunc | 156340 | Sterile |
90 mm Bacterial Grade Culture Dish | Miniplast, Ein Shemer, Israel | 20090-01-017 | Sterile |
15 ml Sterile Conical Centrifuge Tube | Miniplast, Ein Shemer, Israel | 835015-40-111 | Sterile |
50 ml Sterile Conical Centrifuge Tube | Miniplast, Ein Shemer, Israel | 835050-21-111 | Sterile |
Falcon 12×75 mm Round-Bottom Polystyrene Tube | Becton Dickinson | 352058 | Sterile |
Millicell 24 Migration Plate with a pore size of 5μm | Merck Millipore | PSMT010R1 | Sterile |
White 96-Flat-Bottom Well Plate | Costar | 3917 | Sterile |
Cell Strainer (40 mm) | BD Falcon | 352340 | Sterile |
20G 1.5" Needle | BD Microlance 3 | 301300 | Sterile |
23G 1" Needle | BD Microlance 4 | 300800 | Sterile |
25Gx5/8" Needle | BD Microlance 5 | 300600 | Sterile |
0.3 ml Syringe with a 30Gx8mm Needle | BD Micro-Fine Plus Demi | 320829 | Sterile |
9 mm Clips | BD, AutoClip | 427631 | Sterile |
EasySep Magnet | STEMCELL Technologies | 18000 | |
MACS LS Separation Column | Miltenyi Biotech | 130-042-201 | Sterile |
MidiMACS Separator Magnet | Miltenyi Biotech | 130-042-302 | |
MACS MultiStand | Miltenyi Biotech | 130-042-303 | |
Microscope Glass Slide | Menzel-Gläser Superfrost Plus Thermo | J1800AMNZ | |
Orbital Shaker | Sky line, ELMI | S-3.02.10L | |
Plate Reader | TECAN | InfiniteF200Pro | |
POWDER | |||
Bovine serum albumin (BSA), fraction V | Sigma | A7906 | |
Bromodeoxyuridine (BrdU) | BD Pharmingen | 550891 | Sterile |
CFSE (5-(and 6-)-Carboxyfluorescein diacetate, succinimidyl ester) | Molecular Probes | C1157 | |
Dextran T500 | Sigma | 31392 | |
Heparin sodium salt from porcine intestinal mucosa | Sigma | H3149 | |
Sodium azide (NaN3) | Sigma | S8032 | Highly toxic, handle with care |
Thioglycollate powder | Difco | 225650 | |
Zymosan A | Sigma | Z4250 | |
MEDIA AND SUPPLEMENTS | |||
Dulbecco's modified Eagle medium (DMEM) | Sigma | D5796 | Sterile |
Opti-MEM® I reduced serum medium | Life Technologies | 31985062 | Sterile |
Roswell Park Memorial Institute (RPMI)-1640 medium | Sigma | R8758 | Sterile |
Foetal bovine serum (FBS), heat-inactivated | Sigma | F9665 | Sterile |
L-Glutamine | Biological Industries, Beth HaEmek, Israel | 03-020-1A | Sterile |
Sodium pyruvate | Biological Industries, Beth HaEmek, Israel | 03-042-1B | Sterile |
Penicillin Streptomycin x1000 solution | Biological Industries, Beth HaEmek, Israel | 03-031-5 | Sterile |
Phosphate buffered saline (PBS) without Mg2+ and Ca2+ | Biological Industries, Beth HaEmek, Israel | 02-023-1 | Sterile |
PBSx10 without Ca2+ and Mg2+ | Biological Industries, Beth HaEmek, Israel | 02-023-5A | Sterile |
HPLC grade water | J.T. Baker | 4218-03 | Autoclave |
SOLUTIONS | |||
ACK – Ammonium-Chloride-Potassium | Life Technologies | A10492-01 | |
Bromodeoxyuridine (BrdU) solution (10 mg/ml) in PBS | Dissolve 10 mg of BrdU in 1 ml PBS and sterile filter. | ||
CFSE, 5 mM in DMSO | Dissolve 2.8 mg of CFSE in 1 ml DMSO. Divide into 10 ml aliquots in sterile 200 ml tubes and store in the dark at -20oC. | ||
Eosin Y solution | Sigma | HT110-2-32 | |
Hanks' balanced salt solution | Biological Industries, Beth HaEmek, Israel | 02-016-1A | Sterile |
Heparin, 20 mg/ml in PBS | Dissolve 100 mg Heparin in 5 ml sterile PBS, and sterile filter through a 0.2 mm filter. | ||
Histopaque-1119 | Sigma | 11191 | Sterile filter through a 0.2 mm filter. |
Histopaque-1077 | Sigma | 10771 | Sterile filter through a 0.2 mm filter. |
Luciferase cell culture lysis buffer x5 | Promega | E153A | Dilute 1:5 in sterile water just before use. |
Luciferase assay solution | Promega | E1501 | Contains luciferase assay substrate powder (E151A) and luciferase assay buffer (E152A) |
Mayer's Hematoxylin solution | Sigma | MHS-32 | |
PBS+0.5% BSA | Dissolve 2.5g BSA in 500 ml PBS, and sterile filter through a 0.2 mm filter. | ||
PBS+1% BSA | Dissolve 1g BSA in 100 ml PBS, and sterile filter through a 0.2 mm filter. | ||
5x PBS with 2.5% BSA | Dissolve 12.5g BSA in a mixture of 250 ml sterile HPLC-grade water and 250 ml PBSx10, and sterile filter through a 0.2 mm filter. | ||
PBS containing 0.5% BSA and 2 mM EDTA | Dissolve 250 mg BSA in 50 ml sterile PBS and add 200 ml of 0.5M EDTA pH 8.0, sterile filter through a 0.2 mm filter. | ||
FACS buffer (PBS containing 0.5% BSA, 2 mM EDTA and 0.02% NaN3) | Dissolve 250 mg BSA in 50 ml sterile PBS and add 200 ml of 0.5M EDTA pH 8.0 and 500 ml of 2% NaN3, sterile filter through a 0.2 mm filter. | ||
Saline (0.9% NaCl) | Dissolve 9 g NaCl in 1000 ml ddw, autoclave | ||
0.2% NaCl solution | Dissolve 2 g NaCl in 1000 ml ddw, autoclave | ||
1.6% NaCl solution | Dissolve 16 g NaCl in 1000 ml ddw, autoclave | ||
2 % Sodium azide | Dissolve 1g sodium azide in 50 ml sterile ddw, keep at 4oC. Highly toxic. | ||
3% Thioglycollate solution | Dissolve 3 g of thioglycollate powder in 100 ml ddw. Boil until solution becomes yellow and autoclave. | ||
Trypan blue solution (0.4%) | Sigma | T8154 | Dilute 1:10 in PBS to get a 0.04% solution. |
Trypsin solution B | Biological Industries, Beth HaEmek, Israel | 03-046-1 | Sterile |
1 mg/ml Zymosan A | Resuspend 1 mg Zymosan A in 1 ml sterile PBS in an Eppendorf tube. Vortex vigorously and incubate the tube at 37 oC for 30 min. Do not autoclave. Prepare the solution freshly before use. | ||
KITS | |||
EasySep PE selection kit | STEMCELL Technologies | 18557 | |
EasySep PE selection cocktail | STEMCELL Technologies | 18151 | |
the EasySep magnetic nanoparticles | STEMCELL Technologies | 18150 | |
Anti-Ly6G mouse MicroBead Kit | Miltenyi Biotec | 130-092-332 | |
EasySep Mouse Neutrophil Enrichment Kit | STEMCELL Technologies | 19762 | |
EasySep Human Neutrophil Enrichment Kit | STEMCELL Technologies | 19257 | |
FITC BrdU flow kit | BD Pharmingen | 559619 | |
MACS Neutrophil isolation kit | Miltenyi Biotec | 130-097-658 | |
Phagocytosis Assay Kit | Cayman Chemical Company | 500290 | |
ANTIBODIES | |||
FcR blocking antibody | Biolegend | 101302 | |
Purified rat anti-Ly6G antibody | BD Pharmingen | 551459 | Clone 1A8 |
PE-conjugated rat anti-mouse Ly6G antibody | Biolegend | 127608 | Clone 1A8 |
FITC-conjugated rat anti-mouse Ly6G | BD Pharmingen | 551460 | Clone 1A8 |
PerCP-Cy5.5 rat anti-mouse Ly6G | TONBO Biosciences | 65-1276 | Clone 1A8 |
violetFluor 450-conjugated rat anti-mouse Ly6G | TONBO Biosciences | 75-1276 | Clone 1A8 |
FITC-conjugated rat anti-mouse CD11b | BD Pharmingen | 553310 | Clone M1/70 |
FITC-conjugated rat anti-mouse Ly-6G and Ly-6C (GR-1) | BD Pharmingen | 553127 | Clone RB6-8C5 |
PE-conjugated rat anti-mouse CD45 | BD Pharmingen | 553081 | Clone 30-F11 |
FITC-conjugated rat anti-mouse F4/80 | Abcam | ab60343 | Clone BM8 |
FITC-conjugated mouse anti-human CD66b | Biolegend | 305103 | Clone G10F5 |
Purified rat isotype control antibody (IgG2a, k) | BD Pharmingen | 553927 | Clone R35-95 |
LEAF purified Armenian hamster anti-mouse CD3e antibody | BioLegend | 100314 | Clone 145-2C11 |