Summary

七鳃鳗网状脊髓轴突急性分解到从单个功能突触前终端剥离面膜启用记录

Published: October 01, 2014
doi:

Summary

Recording Ca2+ currents at the presynaptic release face membrane is key to a precise understanding of Ca2+ entry and neurotransmitter release. We present an acute dissociation of the lamprey spinal cord that yields functional isolated reticulospinal axons, permitting recording directly from the release face membrane of individual presynaptic terminals.

Abstract

突触传递是极其快速的过程。动作电位驱动 Ca 2 +的内流进入突触前末梢,通过设在剥离面的膜电压门控性钙通道(VGCCs),是在触发小泡的融合和神经递质的释放。至关重要的突触传递的快速性的动作电位,VGCCs的到来和神经递质的释放机制之间的空间和时间同步。直接记录的Ca从个体的突触前末梢的释放面膜2 +电流的能力是必要的突触前 Ca 2 +和神经递质的释放之间的关系的精确了解。进入突触前释放的脸膜电生理记录是不是在大多数准备,突触前钙离子可进入已使用的成像技术和宏观电流measureme特点NTS -没有足够的时间分辨率,以可视化 Ca 2 +进入的技术。 VGCCs直接在单个突触前终端的特征已经不可能在中央突触和迄今一直只在鸡睫状神经节的花萼型突触,并在大鼠肾盏成功实现。我们已经成功地在七鳃鳗脊髓通过制定急性分离脊髓能够产生孤立的网状脊髓轴突与功能性的突触前终端缺乏突触后结构的准备的巨型网状脊髓突触解决了这个问题。我们可以荧光标记和识别单个突触前终端和针对他们的记录。使用这种准备,我们直接采用免疫组化和电生理的方法个别突触前末梢释放的脸表征VGCCs。 钙离子电流一直在剥离面的膜Ø直接记录˚F单个突触前末梢,第一个这样的记录来进行在中央突触。

Introduction

突触传递是极其快速和精确的过程。动作电位在突触前终端的入侵导致了开放位于剥离面的膜,由此带来的突触前作为触发的囊泡融合和神经递质的释放1 VGCCs的。所有这些步骤发生几百微秒2的范围内,并因此需要VGCCs的囊泡融合机械3的紧空间耦合。突触前钙离子通量一直主要通过影像学方法,使用钙离子敏感的染料4特点。结合 Ca 2 +的缓冲液调制 Ca 2 +在突触前神经元已被用于间接地表征突触前钙和神经传递3之间的关系。另外,通过解笼锁 Ca 2 + 5或记录macroscopi调节突触前游离 Ca 2 +浓度Ç Ca 2 +电流,一直配合使用囊泡融合和/或释放的措施;如电容测量6或突触后反应2,解决同样的问题。然而, 离子电流直接剥离面表征钙,突触前膜的特殊部分,其中膜去极化转化为钙离子电流,引发突触囊泡融合和神经递质的释放,是不可或缺的获得钙的精确测量离子要求突触囊泡融合。此外,能够直接在个人突触前末梢表征 Ca 2 +电流,加上囊泡融合和释放的精确同步测量允许的动作电位时程之间的定时关系的精确澄清,突触前 Ca 2 +电流,囊泡融合和释放。访问该释放面膜是不是在大多数由于通过突触后树突关闭并置的突触前末梢的提供。这交通不便一直在VGCCs的特性的一大障碍,因为它可以防止电流的个体突触前终端的直接测量。突触前电流个别突触前终端的直接表征迄今未能在中央突触,并只有两个肾盏型突触前终端已经实现;小鸡睫状神经节7-10和大鼠肾盏11,12的花萼型突触。在所有其它突触前的终端包括七鳃鳗脊髓13巨网状脊髓突触,缺乏进入突触前释放的脸膜因此有必要采用间接的方法,如成像研究突触前钙离子通量。

<img alt="图1" f○:内容宽度="“5英寸”SRC" >
图1:七鳃鳗巨型网状脊髓突触。(一)横截面七鳃鳗脊髓表明背腹方向。网状脊髓轴突都标有绿色星号(B)3-D中的网状脊髓突触中的七鳃鳗脊髓显示突触前网状脊髓轴突使得无数顺便接点(标记绿色箭头)到突触后神经元13的重建。突触前终端已经被标记的Alexa Fluor 488的酰肼轭毒伞素(绿色),而突触后神经元已经充满的Alexa Fluor 568的酰肼(红色)。

鳗巨型网状脊髓轴突,位于平行脊髓延髓-尾轴图1a,形式多种顺便突触联系的腹侧区域上的神经元脊髓前角14 图1b 13。在完整的脊髓13,15宏观全细胞电流已经记录从网状脊髓轴突。然而,以往的盲目尝试直接测量的Ca 2 +电流在用细胞贴附膜片钳技术的完整的七鳃鳗脊髓网状脊髓轴突已经证明不成功的13由于缺乏进入突触前释放的脸膜由于反对突触后处理图1b。剥离面膜已经预先,记 ​​录12或酶处理加上机械解离16前突触的机械扰动进行访问除去突触后神经元11。给出的脊髓的复合组织,其将被证明非常难以识别突触后神经元上和机械缩回它​​或扰乱日ê突触。因此,我们决定用酶处理17接着机械解离。

使用这种方法,我们已经开发了一种急性分离的七鳃鳗脊髓能够产生可行的隔离网状脊髓轴突与功能性的突触前终端没有任何突触后过程的准备,从而提供不受限制的访问单个突触前终端。在一个标准的倒置显微镜和荧光成像相结合,它使我们能够识别并锁定个人荧光鉴定突触前末梢,用补丁吸管含录音解决方案,隔离 Ca 2 +电流图4c图4d,使用小区记录附加电压钳技术。 钙离子电流已在个别突触前末梢图4F突触前释放的脸膜直接记录。这是一个标志意义NT突破突触传递的领域,因为它是第一个这样的记录来进行,在中央突触。

Protocol

1,制备聚-D-赖氨酸氢溴酸制备1毫克/毫升的聚-D-赖氨酸氢溴酸盐在0.1M硼酸盐缓冲液(pH 8.5)。 分装和储存在-20℃。 盖玻片的二聚赖氨酸涂层注意:进行在层流室中所有的清洗和涂层的步骤。 放置盖玻片含1N盐酸(HCl)的2小时培养皿。 吸出所有的HCl冲洗,用70%乙醇(EtOH中)2-3倍。 发表在70%EtOH中搅拌1小时。 </l…

Representative Results

这离解协议产量的健康和功能性孤立的网状脊髓轴突缺乏突触后预测图2F,但仍然能够保持诱发的突触囊泡外切和内吞图4c和图4d功能性突触前终端。在网状脊髓轴突隔离区的部分可以在光学显微镜下可以清楚地识别要明确任何其他神经元突起允许无限制地访问网状脊髓轴突膜图2f的。轴突保留解离后的结构完整性。分离的轴突修补在全细胞构…

Discussion

我们离解协议是由产生隔离网状脊髓轴突缺乏突触后预测图2F显著,但仍然保留功能性突触前终端图4c图4d。如果没有突触后处理反对突触前终端允许在单个突触前终端直接记录进入突触前释放的脸膜,以前不可能在中央和突触只有两个肾盏型突触前终端成功实现;小鸡睫状神经节7-10和大鼠肾盏11,12的花萼型突触。个别的突触前末梢,其中在?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work has been supported by NINDS, RO1NS52699 and MH84874 to SA.

We would like to thank Dr. Dave Featherstone (Department of Biological Sciences, University for Illinois at Chicago) for providing us with the suture glue used in the immunohistochemistry work. We thank Michael Alpert for his comments and proofreading of the manuscript.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
0.2 µm syringe filter EMD Millipore SLGV004SL
22×60 mm coverslips Fisherbrand 12545J
Advasep-7 Cydex Pharmaceuticals ADV7
Alexa Fluor 488 Phalloidin Invitrogen/Life Technologies A12379
Alexa-633 conjugated goat anti-rabbit secondary antibody Invitrogen/Life Technologies A21070
Antifreeze Prestone
Boric acid Sigma-Aldrich B7660
Bovine Serum Albumin Sigma-Aldrich A7906
Bright field light source Dolan-Jenner Fiberlite 180
Calcium chloride Sigma Aldrich C4901
Collagenase Type IA from Cloristridium histolyticum Sigma-Aldrich C9891
Cover slip Fisher-Scientific 12-545-J
Dextrose Sigma-Aldrich D9559
Digital CCD Camera Hamamatsu C8484-03G01
Dissection fine forceps Fine Science Tools 91150-20
Dissection forceps Fine Science Tools 11251-20
Dissection microscope Leica Biosystems Leica MZ 12
Dissection scissors Fine Science Tools 15025-10
Dissection scissors fine Fine Science Tools 91500-09
Dissection scissors ultra fine Fine Science Tools 15000-08
FM 1-43 Invitrogen/Life Technologies T3163
Glycine Sigma-Aldrich G7126
HEPES Sigma-Aldrich H7523
High vacuum grease Dow-Corning
Hydrochloric acid Fisherbrand SA-56-500
Immersion oil Fisher-Scientific M2000
Industrial grade Nitrogen gas tank Praxair UN1066
Insect pins Fine Science Tools 26002-10
Liquid suture glue Braun Veterinary Cair Division 8V0305 The suture glue we used in our experiments was provided to us by another lab. It is no longer manufactured. We have sourced a Histoacryl Suture Glue for future use from Aesculap (Ts1050071FP)
Magnesium chloride Sigma-Aldrich M2670
Methanol Sigma-Aldrich 154903
Non-fat dry milk Cell Signaling Technology 9999S
P-87 Micropipette puller Sutter Instruments
Paraformaldehyde Sigma-Aldrich P6148
Perfusion pump Cole-Palmer Masterflex C/L
Petri dish 100×15 mm Fisher-Scientific 875712
Petri dish 35×10 mm Fisher-scientific 875712
Poly-D-lysine hydrobromide Sigma-Aldrich P1024 MW > 300000
Potassium chloride Sigma-Aldrich P9333
Potassium phosphate monobasic Sigma-Aldrich P5379
Primary antibodiesR-type calcium channel Alomone Labs ACC-006
Protease Type XIV from Streptomyces griseus Sigma-Aldrich P5147
Scalpel blades World Precision Instruments  500240
Schot Duran Preesure Bottle Fisher-Scientific 09-841-006
Silicone tubing for glue application Cole-Palmer 07625-26
Slicing base plate Leica Biosystems 14046327404
Slicing chamber Leica Biosystems 1.4046E+10
Sodium chloride Sigma-Aldrich S7653
Sodium hydroxide S8045
Sodium phosphate dibasic Sigma-Aldrich S9763
Sodium tetraborate Sigma-Aldrich B3545
Sylgard 160 Silicone Elastomer Kit Dow Corning  SYLGARD® 160 To prepare, mix elastomer A and elastomer B 10:1 by weight
Sylgard 184 Silicone Elastomer Kit Dow Corning SYLGARD® 184  To prepare, mix elastomer and curing agent 10:1 by weight
Teflon coated forceps Fine Science Tools 11626-11
Tricaine methanesulphonate Sigma-Aldrich A5040
Vibratome blades World Precision Instruments  BLADES
Xenon lamp Nikon

Referencias

  1. Katz, B., Miledi, R. The timing of calcium action during neuromuscular transmission. Journal of Physiology. 189 (3), 535-544 (1967).
  2. Sabatini, B. L., Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature. 384 (6605), 170-172 (1996).
  3. Augustine, G. J., Adler, E. M., Charlton, M. P. The calcium signal for transmitter secretion from presynaptic nerve terminals. Annals of the New York Academy of Sciences. 635, 365-381 (1991).
  4. Zucker, R. S. Calcium and transmitter release. Journal of Physiology Paris. 87 (1), 25-36 (1993).
  5. Delaney, K. R., Shahrezaei, V. Uncaging Calcium in Neurons. Cold Spring Harbor protocols. (12), (2013).
  6. Paradiso, K., Wu, W., Wu, L. G. Methods for patch clamp capacitance recordings from the calyx. Journal of Visualized Experiments. (6), 244 (2007).
  7. Stanley, E. F. The calyx-type synapse of the chick ciliary ganglion as a model of fast cholinergic transmission. Canadian Journal of Physiology and Pharmacology. 70, S73-S77 (1992).
  8. Church, P. J., Stanley, E. F. Single L type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. The Journal of Physiology. 496 (Pt 1), 59-68 (1996).
  9. Stanley, E. F. Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron. 11 (6), 1007-1011 (1993).
  10. Weber, A. M., Wong, F. K., Tufford, A. R., Schlichter, L. C., Matveev, V., Stanley, E. F. N-type Ca(2+) channels carry the largest current implications for nanodomains and transmitter release. Nature Neuroscience. 13 (11), 1348-1350 (2010).
  11. He, L., Wu, X. S., Mohan, R., Wu, L. G. Two modes of fusion pore opening revealed by cell attached recordings at a synapse. Nature. 444 (7115), 102-105 (2006).
  12. Sheng, J., He, L., et al. Calcium channel number critically influences synaptic strength and plasticity at the active zone. Nature Neuroscience. 15 (7), 998-1006 (2012).
  13. Photowala, H., Freed, R., Alford, S. Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal. The Journal of Physiology. 569. 569 (Pt 1), 119-135 (2005).
  14. Rovainen, C. M. Synaptic interactions of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey. Journal of Comparative Neurology. 154 (2), 207-223 (1974).
  15. Takahashi, M., Freed, R., Blackmer, T., Alford, S. Calcium influx independent depression of transmitter release by 5 HT at lamprey spinal cord synapses. The Journal of Physiology. 532 (2), 323-336 (2001).
  16. Stanley, E. F., Goping, G. Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal. The Journal of Neuroscience. 11 (4), 985-993 (1991).
  17. El Manira, A., Bussières, N. Calcium channel subtypes in lamprey sensory and motor neurons. Journal of Neurophysiology. 78 (3), 1334-1340 (1997).
  18. Kay, A. R., Alfonso, A., et al. Imaging synaptic activity in intact brain and slices with FM1 43 in C elegans lamprey and rat. 24 (4), 809-817 (1999).
  19. Betz, W. J., Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 255 (5041), 200-203 (1992).
  20. Bleckert, A., Photowala, H., Alford, S. Dual pools of actin at presynaptic terminals. Journal of Neurophysiology. 107 (12), 3479-3492 (2012).
  21. Gustafsson, J. S., Birinyi, A., Crum, J., Ellisman, M., Brodin, L., Shupliakov, O. Ultrastructural organization of lamprey reticulospinal synapses in three dimensions. The Journal of Comparative Neurology. 450 (2), 167-182 (2002).
  22. Broadie, K., Featherstone, D. E., Chen, K. Electrophysiological Recording in the Drosophila Embryo. Journal of Visualized Experiments. (27), (2009).
  23. Rae, J. L., Levis, R. A. A method for exceptionally low noise single channel recordings. Pflügers Archiv European Journal of Physiology. 420 (5-6), 618-620 (1992).

Play Video

Citar este artículo
Ramachandran, S., Alford, S. Acute Dissociation of Lamprey Reticulospinal Axons to Enable Recording from the Release Face Membrane of Individual Functional Presynaptic Terminals. J. Vis. Exp. (92), e51925, doi:10.3791/51925 (2014).

View Video