Summary

卟啉修饰微球用作流式细胞术补偿质控

Published: March 24, 2023
doi:

Summary

该方案描述了如何通过胺官能化聚苯乙烯珠与卟啉TCPP和酰胺偶联试剂EDC的反应来制备用于流式细胞术的基于卟啉的补偿珠。过滤程序用于减少颗粒副产物。

Abstract

流式细胞术可以根据荧光测量快速表征和定量不同的细胞群。首先用一种或多种荧光试剂对细胞进行染色,每种试剂都用不同的荧光分子(荧光团)进行功能化,荧光团根据其表型特征(例如细胞表面抗原表达)选择性地与细胞结合。与细胞结合的每种试剂的荧光强度可以在流式细胞仪上使用检测指定波长范围的通道进行测量。当使用多个荧光团时,来自单个荧光团的光通常会溢出到不需要的检测通道中,这需要在称为补偿的过程中对荧光强度数据进行校正。

细胞标记实验中使用的每个荧光团都需要补偿对照颗粒,通常是与单个荧光团结合的聚合物微球。来自流式细胞仪补偿颗粒的数据用于对荧光强度测量进行校正。该协议描述了与荧光试剂内消旋-四(4-羧基苯基)卟啉(TCPP)共价官能化的聚苯乙烯补偿珠的制备和纯化及其在流式细胞术补偿中的应用。在这项工作中,用TCPP和酰胺偶联试剂EDC(N-(3-二甲氨基丙基)-N′-乙基碳二亚胺盐酸盐)在pH 6和室温下搅拌16 h处理胺官能化的聚苯乙烯珠。通过离心分离TCPP磁珠,并重悬于pH 7缓冲液中储存。与TCPP相关的颗粒物被观察到为副产品。这些颗粒的数量可以使用可选的过滤方案来减少。所得TCPP磁珠成功用于流式细胞仪,用于用多个荧光团标记的人痰细胞实验中的补偿。TCPP珠子在冰箱中储存300天后被证明是稳定的。

Introduction

卟啉因其荧光和肿瘤靶向特性而在生物医学领域引起了多年的关注1,23光动力疗法(PDT)和声动力疗法(SDT)等治疗应用需要向癌症患者全身施用卟啉,药物在肿瘤中的积累以及肿瘤局部暴露于特定波长的激光或超声波。暴露于激光或超声波会导致卟啉产生活性氧,随后细胞死亡45。在光动力诊断(PDD)中,卟啉荧光用于区分癌细胞和正常细胞6。在这种情况下,原卟啉 IX 是一种天然荧光卟啉,在全身或局部注射其前体 5-氨基乙酰丙酸 (5-ALA) 后积聚在肿瘤中,用于识别胃肠道间质瘤、膀胱癌和脑癌78。最近,探索了5-ALA治疗作为检测多发性骨髓瘤9中微小残留病的方法。我们的实验室一直在使用四芳基卟啉TCPP(5,10,15,20-四-(4-羧基苯基)-21,23H-卟啉),因为它能够选择性地染色人痰样本中的肺癌细胞和癌症相关细胞,这一特性已在基于玻片和流式细胞术诊断测定中得到利用10

一些卟啉是双功能的,因为它们可以用作治疗和诊断剂211。在生物医学研究中,这种双功能卟啉用于评估它们选择性靶向和杀死癌细胞的能力如何是其结构的功能,以及它如何受到其他化合物12,13141516的影响。卟啉的细胞摄取及其细胞毒性都可以在流式细胞术平台上以高通量方式测量。荧光卟啉的吸收和发射光谱很复杂,但大多数流式细胞术平台都配备了正确识别它们的能力。荧光卟啉的吸收光谱的特征在于380-500nm范围内的强吸收带,称为Soret带。通常在 500-750 nm 范围(Q 波段)中观察到两到四个较弱的吸收带17。大多数流式细胞仪中存在的蓝色 488 nm 激光或紫色激光 (405 nm) 可以产生适当波长的光来激发卟啉。卟啉的发射光谱通常显示600-800nm范围内18的峰,这导致与异硫氰酸荧光素或藻红蛋白(PE)荧光团的光谱重叠非常小,但与其他常用的荧光团(如别藻蓝蛋白(APC))以及串联荧光团(如PE-Cy5等)有相当大的重叠。因此,在多色流式细胞术测定中使用卟啉时,单荧光团对照对于充分校正荧光在指定用于测量卟啉荧光的通道以外的通道中的溢出至关重要。

理想情况下,用于计算一组荧光团溢出基质的单荧光基团对照(也称为“补偿对照”)应由与样品相同的细胞类型组成。但是,如果开始时的样本很少,或者样本中的目标人群非常小(例如,如果想在疾病的早期阶段观察微小的残留疾病或癌细胞),则为此目的使用样本并不是最佳的。细胞的有用替代品是微球与用于分析样品的相同荧光团耦合。许多这样的珠子是市售的;这些磁珠要么用所需的荧光团预标记(预标记的荧光团特异性微球)19,20,要么可以将荧光标记的抗体附着在其上(抗体捕获珠)2021虽然商业补偿微球可用于许多荧光团,但此类微球不适用于卟啉,尽管它们在基础和临床研究中的使用越来越多。

除了样品保存和适当大小的阳性与阴性群体外,使用微球作为补偿对照的其他优点是易于制备、低背景荧光和随时间推移的出色稳定性22。使用磁珠作为补偿对照的潜在缺点是,磁珠上捕获的荧光抗体的发射光谱可能与用于标记细胞的相同抗体的发射光谱不同。当使用光谱流式细胞仪20时,这可能具有特别重要的意义。因此,需要在流式细胞仪上进行磁珠作为补偿对照的开发,该流式细胞仪将用于开发磁珠的测定。此外,磁珠的显影需要包括与用相同荧光染色试剂标记的细胞进行比较。

在这里,我们描述了TCPP胺官能化聚苯乙烯补偿珠的制备,其检测通道中的中位荧光强度与痰液中TCPP标记细胞的荧光强度相当,以及它们作为流式细胞术的补偿对照的用途。等效的非功能化微球的自发荧光足够低,可以用作负荧光补偿对照。此外,这些磁珠在储存中表现出近 1 年的稳定性。

Protocol

所有程序都需要使用适当的个人防护设备来完成。 1. TCPP储备溶液的制备,1.0 mg/ mL 注意:这可以每月准备一次。 使用分析天平、刮刀和称量纸,称取 49.0-50.9 mg TCPP。将重量四舍五入为 1/10 毫克。将测量的TCPP量放在避光的地方。注意:如果重量读数不稳定,请使用静态喷枪。 根据步骤1.1中称量的TCPP量,从 表1 ?…

Representative Results

该协议用于磁珠的TCPP标记相对快速和有效。图1显示了通过流式细胞术确定的TCPP磁珠标记过程的代表性结果。图1A显示了彩虹珠的标准化曲线,如在用于检测TCPP的适当通道中检测到的那样。这些微球用作流式细胞仪检测TCPP的激光电压标准化的QC。图1B显示了胺官能化聚苯乙烯TCPP标记磁珠的光散射曲线。图1C?…

Discussion

尽管卟啉在癌症诊断和治疗学中有许多应用2,但关于它们作为流式细胞术试剂用于鉴定原代人体组织中癌性与非癌性细胞群的潜在用途的文献有限242526。我们对人痰2427 的流式细胞术分析的研究需要用TCPP和其他几种荧光团对解离的痰细胞进行染色。然而,TCP…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢David Rodriguez在图形制备和精确病理学服务(德克萨斯州圣安东尼奥)使用其Navios EX流式细胞仪方面的帮助。

Materials

Amber plastic vials, 2 mL, U- bottom, polypropylene Research Products International   ZC1028-500
Amine-funtionalized polystyrene divinylbenzene crosslinked (PS/DVB) beads, 10.6 μm diameter, 2.5% w/v aqueous suspension, 3.82 x 107 beads/mL, 7.11 x 1011 amine groups/ bead Spherotech APX-100-10 Diameter spec. 8.0-12.9 um, suspension 2.5% w/v 3.82 x 107 beads/mL, 7.11 x 1011 amine groups/ bead
Conical tubes, 50 mL, Falcon Fisher Scientific 14-432-22
Centrifuge with appropriate rotor
Disposable polystyrene bottle with cap, 150 mL Fisher Scientific 09-761-140
EDC (N- (3- dimethylaminopropyl)- N'- ethylcarbodiimide hydrochloride), ≥98% Sigma 03450-1G CAS No:  25952-53-8
FlowJo Single Cell Analysis Software (v10.6.1) BD
Glass coverslips, 22 x 22 mm Fisher Scientific 12-540-BP
Glass fiber syringe filters (Finneran, 5 µm, 13 mm diameter) Thomas Scientific 1190M60
Glass microscope slides, 275 x 75 x 1 mm Fisher Scientific 12-550-143
Hanks Balanced Salt Solution (HBSS) Fisher Scientific 14-175-095
Isopropanol, ACS grade Fisher Scientific AC423830010
Mechanical pipette, 1 channel, 100-1000 uL with tips Eppendorf 3123000918
MES (22- (N- mopholino)- N'- ethanesulfonic acid, hemisodium salt Sigma M0164 CAS No:  117961-21-4
Navios EX flow cytometer Beckman Coulter
Olympus BX-40 microscope with DP73 camera and 40X objective with cellSens software Olympus or similar
Pasteur pipettes, glass, 5.75" Fisher Scientific 13-678-6B
pH meter (UB 10 Ultra Basic) Denver Instruments
Pipette controller (Drummond) Pipete.com DP101
Plastic Syringe, 5 mL Fisher Scientific 14955452
Polystyrene Particles (non-functionalized), SPHERO,  2.5% w/v, 8.0-12.9 µm Spherotech PP-100-10 
Polypropylene tubes, 15mL, conical Fisher Scientific 14-959-53A
Polystyrene tubes, round bottom  Fisher Scientific 14-959-2A
Rainbow Beads (Spherotech URCP-50-2K) Fisher Scientific NC9207381
Serological pipettes, disposable – 10 mL Fisher Scientific 07-200-574
Serological pipettes, disposable – 25 mL Fisher Scientific 07-200-576
Sodium bicarbonate (NaHCO3) Sigma S6014 CAS No:  144-55-8
TCPP (meso-tetra(4-carboxyphenyl)porphine)  Frontier Scientific  Fisher Scientific 50-393-68 CAS No:  14609-54-2
Tecan Spark Plate Reader (or similar) Tecan Life Sciences
Tube revolver/rotator Thermo Fisher 88881001
Vortex mixer Fisher Scientific 2215365

References

  1. Josefsen, L. B., Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics. 2 (9), 916-966 (2012).
  2. Tsolekile, N., Nelana, S., Oluwafemi, O. S. Porphyrin as diagnostic and therapeutic agent. Molecules. 24 (14), 2669 (2019).
  3. Gunaydin, G., Gedik, M. E., Ayan, S. Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status. Frontiers in Chemistry. 9, 686303 (2021).
  4. Berg, K., et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. Journal of Microscopy. 218, 133-147 (2005).
  5. Kessel, D., Reiners, J. Light-activated pharmaceuticals: Mechanisms and detection). Israel Journal of Chemistry. 52 (8-9), 674-680 (2012).
  6. Didamson, O. C., Abrahamse, H. Targeted photodynamic diagnosis and therapy for esophageal cancer: Potential role of functionalized nanomedicine. Pharmaceutics. 13 (11), 1943 (2021).
  7. Harada, Y., Murayama, Y., Takamatsu, T., Otsuji, E., Tanaka, H. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence imaging for tumor detection: Recent advances and challenges. International Journal of Molecular Sciences. 23 (12), 6478 (2022).
  8. Bochenek, K., Aebisher, D., Międzybrodzka, A., Cieślar, G., Kawczyk-Krupka, A. Methods for bladder cancer diagnosis – The role of autofluorescence and photodynamic diagnosis. Photodiagnosis and Photodynamic Therapy. 27, 141-148 (2019).
  9. Iwaki, K., et al. Flow cytometry-based photodynamic diagnosis with 5-aminolevulinic acid for the detection of minimal residual disease in multiple myeloma. The Tohoku Journal of Experimental Medicine. 249 (1), 19-28 (2019).
  10. Patriquin, L., et al. Early detection of lung cancer with meso tetra (4-carboxyphenyl) porphyrin-labeled sputum. Journal of Thoracic Oncology. 10 (9), 1311-1318 (2015).
  11. Pan, L., et al. A brief introduction to porphyrin compounds used in tumor imaging and therapies. Mini Reviews in Medicinal Chemistry. 21 (11), 1303-1313 (2021).
  12. Nishida, K., Tojo, T., Kondo, T., Yuasa, M. Evaluation of the correlation between porphyrin accumulation in cancer cells and functional positions for application as a drug carrier. Scientific Reports. 11 (1), 2046 (2021).
  13. Lin, Y., Zhou, T., Bai, R., Xie, Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. Journal of Enzyme Inhibition and Medicinal Chemistry. 35 (1), 1080-1099 (2020).
  14. Kou, J., Dou, D., Yang, L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 8 (46), 81591-81603 (2017).
  15. Wezgowiec, J., et al. Electric field-assisted delivery of photofrin to human breast carcinoma cells. The Journal of Membrane Biology. 246 (10), 725-735 (2013).
  16. Palasuberniam, P., et al. Small molecule kinase inhibitors enhance aminolevulinic acid-mediated protoporphyrin IX fluorescence and PDT response in triple negative breast cancer cell lines. Journal of Biomedical Optics. 26 (9), 098002 (2021).
  17. Kim, B., Bohandy, J. Spectroscopy of porphyrins. Johns Hopkins APL Technical Digest. 2 (3), 153-163 (1981).
  18. Uttamlal, M., Sheila Holmes-Smith, A. The excitation wavelength dependent fluorescence of porphyrins. Chemical Physics Letters. 454 (4), 223-228 (2008).
  19. Zhang, Y. Z., Kemper, C., Bakke, A., Haugland, R. P. Novel flow cytometry compensation standards: internally stained fluorescent microspheres with matched emission spectra and long-term stability. Cytometry. 33 (2), 244-248 (1998).
  20. Monard, S. Building a spectral cytometry toolbox: Coupling fluorescent proteins and antibodies to microspheres. Cytometry. Part A. 101 (10), 846-855 (2022).
  21. Byrd, T., et al. Polystyrene microspheres enable 10-color compensation for immunophenotyping of primary human leukocytes. Cytometry. Part A. 87 (11), 1038-1046 (2015).
  22. Roederer, M. Compensation in flow cytometry. Current Protocols in Cytometry. , (2002).
  23. Kabe, Y., et al. Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. The Journal of Biological Chemistry. 281 (42), 31729-31735 (2006).
  24. Bederka, L. H., et al. Sputum analysis by flow cytometry; An effective platform to analyze the lung environment. PLoS One. 17 (8), e0272069 (2022).
  25. . US6838248B2 – Compositions and methods for detecting pre-cancerous conditions in cell and tissue samples using 5, 10, 15, 20-tetrakis (carboxyphenyl) porphine Available from: https://patents.google.com/patent/US68248B2/en?oq=US+patent+6838248+B2 (2005)
  26. . Method of using 5,10,15,20-tetrakis(carboxyphenyl)porphine for detecting cancers of the lung Available from: https://www.osti.gov/deopatents/biblio/7117152 (1992)
  27. Grayson, M., et al. Quality-controlled sputum analysis by flow cytometry. Journal of Visualized Experiments. (174), e62785 (2021).
  28. Anjali, K., Christopher, J., Sakthivel, A. Ruthenium-based macromolecules as potential catalysts in homogeneous and heterogeneous phases for the utilization of carbon dioxide. ACS Omega. 4 (8), 13454-13464 (2019).
  29. Yadav, R., et al. Recent advances in the preparation and applications of organo-functionalized porous materials. Chemistry. 15 (17), 2588-2621 (2020).
  30. . US7670799B2 – Method for making 5,10,15,10-tetrakis (carboxyphenyl) porphine (TCPP) solutions and composition compromising TCPP Available from: https://patents.google.com/patent/US7670799B2/en (2023)
  31. Shimizu, N., et al. High-performance affinity beads for identifying drug receptors. Nature Biotechnology. 18 (8), 877-881 (2000).
  32. Anderson, G. W., Zimmerman, J. E., Callahan, F. M. The use of esters of N-hydroxysuccinimide in peptide synthesis. Journal of the American Chemical Society. 86 (9), 1839-1842 (1964).
  33. Hermanson, G. T. . Bioconjugate Techniques. , (2013).
  34. El-Faham, A., Albericio, F. Peptide coupling reagents, more than a letter soup. Chemical Reviews. 111 (11), 6557-6602 (2011).
  35. Hulspas, R., O’Gorman, M. R. G., Wood, B. L., Gratama, J. W., Sutherland, D. R. Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry Part B. 76 (6), 355-364 (2009).
  36. Hoffman, R. A. Standardization, calibration, and control in flow cytometry. Current Protocols in Cytometry. , (2005).
  37. Ethirajan, M., Chen, Y., Joshi, P., Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews. 40 (1), 340-362 (2011).
  38. Beharry, A. A. Next-generation photodynamic therapy: New probes for cancer imaging and treatment. Biochemistry. 57 (2), 173-174 (2018).
  39. El-Far, M., Pimstone, N. A comparative study of 28 porphyrins and their abilities to localize in mammary mouse carcinoma: Uroporphyrin I superior to hematoporphyrin derivative. Progress in Clinical and Biological Research. 170, 661-672 (1984).

Play Video

Cite This Article
Bauta, W., Grayson, M., Titone, R., Rebeles, J., Rebel, V. I. Porphyrin-Modified Beads for Use as Compensation Controls in Flow Cytometry. J. Vis. Exp. (193), e65294, doi:10.3791/65294 (2023).

View Video