Visualizzare la mielinizzazione è un obiettivo importante per molti ricercatori che studiano il sistema nervoso. CARS è una tecnica compatibile con l’immunofluorescenza in grado di visualizzare nativamente i lipidi all’interno di tessuti come il cervello illuminando strutture specializzate come la mielina.
La spettroscopia coerente anti-Stokes Raman (CARS) è una tecnica classicamente impiegata da chimici e fisici per produrre un segnale coerente delle vibrazioni delle molecole. Tuttavia, queste firme vibrazionali sono anche caratteristiche delle molecole all’interno del tessuto anatomico come il cervello, rendendolo sempre più utile e applicabile per le applicazioni delle neuroscienze. Ad esempio, CARS può misurare i lipidi eccitando specificamente i legami chimici all’interno di queste molecole, consentendo la quantificazione di diversi aspetti del tessuto, come la mielina coinvolta nella neurotrasmissione. Inoltre, rispetto ad altre tecniche tipicamente utilizzate per quantificare la mielina, CARS può anche essere impostato per essere compatibile con le tecniche immunofluorescenti, consentendo la co-etichettatura con altri marcatori come i canali del sodio o altri componenti della trasmissione sinaptica. I cambiamenti della mielinizzazione sono un meccanismo intrinsecamente importante nelle malattie demielinizzanti come la sclerosi multipla o altre condizioni neurologiche come la sindrome dell’X fragile o i disturbi dello spettro autistico è un’area emergente di ricerca. In conclusione, CARS può essere utilizzato in modi innovativi per rispondere a domande urgenti nelle neuroscienze e fornire prove dei meccanismi sottostanti legati a molte diverse condizioni neurologiche.
I potenziali d’azione sono l’unità di base dell’informazione nel cervello e la propagazione del potenziale d’azione attraverso gli assoni costituisce un pilastro dell’elaborazione delle informazioni 1,2,3. I neuroni ricevono tipicamente input afferenti da più altri neuroni e integrano questi input all’interno di una data finestra temporale ristretta 4,5. Pertanto, i meccanismi di propagazione del potenziale d’azione negli assoni hanno ricevuto una notevole attenzione da parte degli investigatori.
Quando si propaga attraverso un assone, un potenziale d’azione viene rigenerato ripetutamente lungo l’assone per garantire una propagazione affidabile6. Nella maggior parte dei neuroni dei vertebrati mascellari (gnatostomi) gli assoni sono circondati da una guaina di mielina, che è una sostanza ricca di lipidi prodotta dagli oligodendrociti vicini o dalle cellule di Schwann, che sono tipi di cellule gliali (rivisto in 7,8). Questa guaina mielinica isola elettricamente l’assone, riducendone la capacità e consentendo la propagazione del potenziale d’azione in modo efficiente, rapido e con un minor consumo di energia. La mielina non copre l’assone in modo uniforme, ma riveste l’assone in segmenti che hanno brevi spazi tra di loro, chiamati nodi di Ranvier (recensito in 9,10). Sia lo spessore della mielinizzazione, che controlla il livello di isolamento elettrico di un assone, sia la spaziatura dei nodi di Ranvier, che controllano la frequenza con cui i potenziali d’azione vengono rigenerati lungo un assone, influenzano la velocità di propagazione del potenziale d’azione (rivisto in11).
C’è un ampio corpo di letteratura che suggerisce che lo spessore della mielinizzazione influenza la velocità di propagazione del potenziale d’azione negli assoni12,13,14. Inoltre, alterazioni nella mielinizzazione degli assoni possono provocare un numero di deficit del SNC 15,16,17,18,19,20,21. Non sorprende quindi che il focus di molti sforzi di ricerca riguardi la misurazione e la caratterizzazione della mielinizzazione assonica. Le misurazioni dello spessore della mielina sono state comunemente eseguite con la microscopia elettronica, una tecnica che richiede una quantità significativa di preparazione dei tessuti ed è difficile da usare in combinazione con l’immunoistochimica. Tuttavia, esiste anche una tecnica più rapida e semplice per misurare la mielinizzazione degli assoni basata sulla spettroscopia Raman coerente anti-Stokes (CARS). Un laser CARS può essere sintonizzato su varie frequenze e quando sintonizzato su frequenze adatte ad eccitare i lipidi, la mielina può essere ripresa senza la necessità di etichette aggiuntive22. L’imaging lipidico può essere combinato con l’immunoistochimica standard in modo tale che i lipidi possano essere visualizzati insieme a diversi canali fluorescenti23. La mielinizzazione per immagini con CARS è significativamente più veloce della microscopia elettronica e ha una risoluzione che, sebbene inferiore a EM, è sufficiente per rilevare anche piccole differenze nella mielinizzazione nello stesso tipo di assoni.
Un crescente corpo di letteratura sottolinea il ruolo della mielina nella funzione cerebrale 13,16,21,28. Inoltre, sappiamo che lo spessore della mielinizzazione e il modello di mielinizzazione possono cambiare in diverse condizioni neurologiche come la sclerosi multipla (rivista in29), l’invecchiamento (rivisto in 30), l’autismo20,31 e molti altr…
The authors have nothing to disclose.
Supportato da NIH R01 DC 17924, R01 DC 18401 (Klug) e NIH 1R15HD105231-01, T32DC012280 e FRAXA (McCullagh). L’imaging CARS è stato eseguito nella parte Advanced Light Microscopy Core del NeuroTechnology Center presso l’Anschutz Medical Campus dell’Università del Colorado, supportata in parte da NIH P30 NS048154 e NIH P30 DK116073.
Anesthetic: | |||
1 mL disposable syringe with needle 27 GA x 0.5" | Exel int | 260040 | |
Fatal + | Vortech | ||
Surgery: | |||
Spring Scissors – 8mm Cutting Edge | Fine Science Tools | 15024-10 | |
Standard tweezers | Fine Science Tools | 11027-12 | |
Perfusion: | |||
4% Paraformaldehyde | Fisher Chemical | SF994 (CS) | |
Fine Scissors – Sharp | Fine Science Tools | 14063-11 | |
Kelly hemostats | Fine Science Tools | 13019-14 | |
Millipore H2O | |||
Needle tip, 23 GA x 1" | BD precision glide | 305193 | |
Phosphate buffered saline (PBS): | |||
Potassium chloride | Sigma | P9333 | |
Potassium phosphate monobase | Sigma | P5655 | |
pump with variable flow or equivalent | |||
Sodium chloride | Fisher Chemical | s271-1 | |
Sodiumphosphate dibasic | Sigma | S7907 | |
Dissection: | |||
50 mL vial with 4% PFA | |||
Bochem Chemical Spoon 180mm | Bochem | 230331000 | |
Fine Scissors – Sharp | Fine Science Tools | 14063-11 | |
Noyes Spring Scissors | Fine Science Tools | 15011-12 | |
Pair of fine (Graefe) tweezers | Fine Science Tools | 11050-10 | |
Shallow glass or plastic tray, approximately 10" x 10" | |||
Standard tweezers | Fine Science Tools | 11027-12 | |
Surgical Scissors – Blunt | Fine Science Tools | 14000-20 | |
Slicing: | |||
Agar, plant | RPI | 9002-18-0 | |
Vibratome | Leica | VT1000s | |
well plate | Alkali Sci. | TPN1048-NT | |
Staining: | |||
AB Media: | 1n 1,000 mL of Millipore H2O | ||
Phosphate buffered (PB): | |||
Potassium Phosphate Monobase | Sigma | P5655 | |
Sodium Phosohate Dibasic | Sigma | S7907 | |
BSA (Bovine serum albumin) | Sigma life science | A2153-100g | |
Sodium Chloride | Fisher Chemical | s271-1 | |
Triton X-100 | Sigma – Aldrich | x100-500ml | |
Nissl 435/455 | Invitrogen | N21479 | |
CARS: | |||
APE picoemerald laser | Angewandte Physik & Elektronik GmbH | ||
bandpass filter (420-520 nm) | Chroma Technology | HQ470/100m-2P | |
bandpass filter (500-530 nm) | Chroma Technology | HQ515/30m-2P | |
bandpass filters (640-680 nm) | Chroma Technology | HQ660/40m-2P | |
Confocal microscope | Olympus | FV1000 | |
Cut Transfer pipet | Fisher | 13-711-7M | |
dichroic longpass 565 nm | Chroma Technology | 565dcxr | |
dichroic longpass 585 nm | Chroma Technology | 585dcxr | |
dichroic shortpass 750 nm | Chroma Technology | T750spxrxt | |
glass bottom culture dish | MatTek | P35G-0-10-C | |
glass weight (10 mm x 10 mm boro rod) | Allen Scientific Glass Inc | ||
multiphoton shortpass emission filter 680 nm | Chroma Technology | ET680sp-2p8 | |
PBS |