Los astrocitos son células morfológicamente complejas, ejemplificadas por sus múltiples procesos y territorios tupidos. Para analizar su elaborada morfología, presentamos un protocolo fiable para realizar la iontoforesis amarilla de Lucifer intracelular en tejido ligeramente fijo.
Los astrocitos son componentes esenciales de los circuitos neuronales. Azulejon todo el sistema nervioso central (SNC) y están involucrados en una variedad de funciones, que incluyen aclaramiento de neurotransmisores, regulación iónica, modulación sináptica, apoyo metabólico a las neuronas, y regulación del flujo sanguíneo. Los astrocitos son células complejas que tienen un soma, varias ramas principales y numerosos procesos finos que contactan diversos elementos celulares dentro del neuropil. Para evaluar la morfología de los astrocitos, es necesario disponer de un método fiable y reproducible para visualizar su estructura. Reportamos un protocolo confiable para realizar la iontoforesis intracelular de astrocitos usando el tinte fluorescente amarillo Lucifer (LY) en tejido cerebral ligeramente fijo de ratones adultos. Este método tiene varias características que son útiles para caracterizar la morfología de los astrocitos. Permite la reconstrucción tridimensional de astrocitos individuales, lo que es útil para realizar análisis morfológicos sobre diferentes aspectos de su estructura. La inmunohistoquímica junto con la iontoforesis LY también se puede utilizar para entender la interacción de los astrocitos con diferentes componentes del sistema nervioso y para evaluar la expresión de proteínas dentro de los astrocitos etiquetados. Este protocolo se puede implementar en una variedad de modelos de ratón de trastornos del SNC para examinar rigurosamente la morfología de los astrocitos con microscopía ligera. La iontoforesis LY proporciona un enfoque experimental para evaluar la estructura de los astrocitos, especialmente en el contexto de lesiones o enfermedades en las que se propone que estas células se sometan a cambios morfológicos significativos.
Los astrocitos son las células gliales más abundantes en el sistema nervioso central (SNC). Juegan papeles en la homeostasis iónial, regulación del flujo sanguíneo, formación de sinapsis, así como la eliminación, y la aceptación de neurotransmisores1. La amplia gama de funciones astrocitos se refleja en su compleja estructura morfológica2,3. Los astrocitos contienen varias ramas primarias y secundarias que se dividen en miles de ramitas y foliolos más finos que interactúan directamente con sinapsis, dendritas, axones, vasos sanguíneos y otras células gliales. La morfología de los astrocitos varía según las diferentes regiones cerebrales, lo que puede insinuar su capacidad para realizar sus funciones diferencialmente en los circuitos neuronales4. Además, se sabe que los astrocitos alteran su morfología durante el desarrollo, durante las condiciones fisiológicas, y en múltiples estados de enfermedad3,5,6.
Se necesita un método consistente y reproducible para resolver con precisión la complejidad de la morfología de los astrocitos. Tradicionalmente, la inmunohistoquímica se ha utilizado para visualizar astrocitos con el uso de marcadores de proteínas específicas de astrocitos o enriquecidos con astrocitos. Sin embargo, estos métodos revelan el patrón de expresión de proteínas en lugar de la estructura del astrocito. Los marcadores de uso común, como la proteína ácida fibrilar glial (GFAP) y la proteína de unión al calcio S100 (S100), no se expresan en todo el volumen celular y, por lo tanto, no resuelven la morfología completa7. Los enfoques genéticos para expresar las proteínas fluorescentes de forma omnipresente en los astrocitos (inyecciones virales o líneas de reporteros de ratones transgénicos) pueden identificar las ramas más finas y el territorio en general. Sin embargo, es difícil diferenciar los astrocitos individuales, y los análisis pueden ser sesgados por la población de astrocitos a los que apunta el promotor específico8. La microscopía electrónica de sección serial se ha utilizado para revelar una imagen detallada de las interacciones de los procesos de astrocitos con sinapsis. Debido a los miles de procesos de astrocitos que contactan con sinapsis, actualmente no es posible reconstruir una célula entera con esta técnica9,aunque se espera que esto cambie con el uso de enfoques de aprendizaje automático para el análisis de datos.
En este informe, nos centramos en un procedimiento para caracterizar los astrocitos de ratón utilizando la iontoforesis intracelular con el tinte amarillo Lucifer (LY), utilizando como ejemplo el radiatum de estrato CA1. El método se basa en trabajos pasados pioneros de Eric Bushong y Mark Ellisman10,11. Los astrocitos de las rebanadas cerebrales ligeramente fijas se identifican por su forma distintiva de soma y se llenan de LY. A continuación, las células se imagee con microscopía confocal. Demostramos cómo la iontoforesis LY se puede utilizar para reconstruir astrocitos individuales y realizar análisis morfológicos detallados de sus procesos y territorio. Además, este método se puede aplicar junto con la inmunohistoquímica para identificar las relaciones espaciales y las interacciones entre astrocitos y neuronas, otras células gliales y vasculatura cerebral. Consideramos QUE LA iontoforesis LY es una herramienta muy adecuada para analizar la morfología en diferentes regiones cerebrales y modelos de ratón de condiciones saludables o de enfermedad7,12,13.
El método descrito en este artículo describe una manera de visualizar la morfología de los astrocitos utilizando la iontoforesis intracelular del tinte LY en rebanadas cerebrales ligeramente fijas. Hay varios factores críticos destacados en este protocolo que contribuyen al éxito de la iontoforesis LY y la reconstrucción morfológica de las células. Un factor es la calidad y reproducibilidad de las imágenes, que se determina en gran medida por la edad del ratón y el resultado de la perfusión. En este estudio, u…
The authors have nothing to disclose.
Los autores agradecen a la Sra. Soto, al Dr. Yu y al Dr. Octeau por su orientación, así como por sus comentarios sobre el texto. Este trabajo es compatible con NS060677.
10% Buffered Formalin Phosphate | Fisher | SF 100-20 | An identical alternative can be used |
Acrodisc Syringe Filters with Supor Membrane | Pall | 4692 | An identical alternative can be used |
Ag/AgCl ground pellet | WPI | EP2 | A similar alternative can be used |
Alexa Fluor 546 goat anti-chicken IgG (H+L) | Thermo Scientific | A-11040 | A similar alternative can be used |
Alexa Fluor 647 goat anti-rabbit IgG (H+L) | Thermo Scientific | A27040 | A similar alternative can be used |
Anti Aquaporin-4 antibody | Novus Biologicals | NBP1-87679 | A similar alternative can be used |
Anti GFAP antibody | Abcam | ab4674 | A similar alternative can be used |
Borosilicate glass pipettes with filament | World precision instruments | 1B150F-4 | |
C57BL/6NTac mice | Taconic Stock | B6 | A similar alternative can be used |
Calcium Chloride | Sigma | 21108 | An identical alternative can be used |
Confocal laser-scanning microscope | Olympus | FV1000MPE | A similar alternative can be used |
D-glucose | Sigma | G7528 | An identical alternative can be used |
Disodium Phosphate | Sigma | 255793 | An identical alternative can be used |
Electrode puller- Model P-97 | Sutter | P-97 | A similar alternative can be used |
Fluoromount-G | Southern Biotech | 0100-01 | An identical alternative can be used |
Heparin sodium injection (1,000 USP per mL) | Sagent Pharmaceuticals | 400-10 | An identical alternative can be used |
Imaris software (Version 7.6.5) | Bitplane Inc. | A similar alternative can be used | |
Isofluorane | Henry Schein Animal Health | 29404 | An identical alternative can be used |
Lidocaine Hydrochloride Injectable (2%) | Clipper | 1050035 | An identical alternative can be used |
Lucifer Yellow CH dilithium salt | Sigma | L0259 | |
Lucifer Yellow CH dipotassium salt | Sigma | L0144 | |
Magnesium Chloride | Sigma | M8266 | An identical alternative can be used |
Microscope Cover Glass | Thermo Scientific | 24X60-1 | An identical alternative can be used |
Microscope Slides | Fisher | 12-544-2 | An identical alternative can be used |
Normal Goat Serum | Vector Laboratories | S-1000 | An identical alternative can be used |
Objective lens (40x) | Olympus | LUMPLFLN 40XW | A similar alternative can be used |
Objective lens (60x) | Olympus | PlanAPO 60X | A similar alternative can be used |
PBS tablets, 100 mL | VWR | VWRVE404 | An identical alternative can be used |
Pipette micromanipulator- Model ROE-200 | Sutter | MP-285 / ROE-200 / MPC-200 | A similar alternative can be used |
Potassium Chloride | Sigma | P3911 | An identical alternative can be used |
Sodium Bicarbonate | Sigma | S5761 | An identical alternative can be used |
Sodium Chloride | Sigma | S5886 | An identical alternative can be used |
Stimulator- Model Omnical 2010 | World precision instruments | Omnical 2010 | A similar alternative can be used |
Triton X 100 | Sigma | T8787 | An identical alternative can be used |
Vibratome- Model #3000 | Pelco | 100-S | A similar alternative can be used |