Астроциты являются морфологически сложными клетками, о чем свидетельствует их многочисленные процессы и густые территории. Для анализа их сложной морфологии мы представляем надежный протокол для выполнения внутриклеточного люцифера желтого ионтофореза в слегка фиксированной ткани.
Астроциты являются важнейшими компонентами нейронных цепей. Они плитки всей центральной нервной системы (ЦНС) и участвуют в различных функций, которые включают нейромедиатор зазор, ионная регуляция, синаптической модуляции, метаболической поддержки нейронов, и регулирование кровотока. Астроциты являются сложными клетками, которые имеют сома, несколько крупных ветвей, и многочисленные тонкие процессы, которые контактируют с различными клеточными элементами в нейропиле. Для того, чтобы оценить морфологию астроцитов, необходимо иметь надежный и воспроизводимый метод визуализации их структуры. Мы сообщаем о надежном протоколе для выполнения внутриклеточного ионтофореза астроцитов с использованием флуоресцентного желтого (LY) красителя Люцифера в слегка фиксированной ткани мозга от взрослых мышей. Этот метод имеет несколько особенностей, которые полезны для характеристики морфологии астроцитов. Это позволяет трехмерную реконструкцию отдельных астроцитов, что полезно для проведения морфологического анализа по различным аспектам их структуры. Иммуногистохимия вместе с ионтофорусом LY также может быть использована для понимания взаимодействия астроцитов с различными компонентами нервной системы и для оценки экспрессии белков в обозначенных астроцитах. Этот протокол может быть реализован в различных моделях мыши расстройств ЦНС для тщательного изучения морфологии астроцитов с помощью световой микроскопии. Ионтофорез LY обеспечивает экспериментальный подход к оценке структуры астроцитов, особенно в контексте травмы или болезни, где эти клетки предлагается претерпеть значительные морфологические изменения.
Астроциты являются наиболее распространенными глиальными клетками в центральной нервной системе (ЦНС). Они играют роль в ионного гомеостаза, регуляции кровотока, формирования синапсов, а также ликвидации, и поглощение нейромедиатора1. Широкий спектр функций астроцитов отражается в их сложной морфологической структуре2,3. Астроциты содержат несколько первичных и вторичных ветвей, которые делятся на тысячи тонких ветвей и листовок, которые непосредственно взаимодействуют с синапсами, дендритами, аксонами, кровеносными сосудами и другими глиальными клетками. Морфология астроцитов варьируется в разных областях мозга, что может намекать на их способность выполнять свои функции дифференцированным в нейронных цепях4. Кроме того, астроциты, как известно, изменить свою морфологию во время развития, во время физиологических условий, и в нескольких состояниях болезни3,5,6.
Для точного решения сложности морфологии астроцитов необходим последовательный, воспроизводимый метод. Традиционно, иммуногистохимия была использована для визуализации астроцитов с использованием астроцитов конкретных или астроцитов обогащенных маркеров белка. Тем не менее, эти методы показывают структуру экспрессии белка, а не структуру астроцитов. Широко используемые маркеры, такие как глиальный фибриллюкислый кислотный белок (GFAP) и S100 кальций связывающий белок (S100), не выражаются во всем объеме клеток и, таким образом, не разрешают полную морфологию7. Генетические подходы к экспрессу флуоресцентных белков повсеместно в астроцитах (вирусные инъекции или трансгенные линии репортера мыши) могут определить более тонкие ветви и общую территорию. Тем не менее, трудно дифференцировать отдельные астроциты, и анализы могут быть предвзятыми по популяции астроцитов, мишенью для конкретногопромоутера 8. Для выявления детальной картины взаимодействия астроцитных процессов с синапсами используется серийная электронная микроскопия. Из-за тысяч астроцитов процессов контакта синапсов, в настоящее время не представляется возможным реконструировать всю ячейку с этой техникой9, хотя это, как ожидается, изменится с использованием машинного обучения подходов для анализа данных.
В этом отчете мы сосредоточиваемся на процедуре характеристики астроцитов мыши с использованием внутриклеточного ионтофорасиса с желтым (LY) красителем Люцифера, используя радиат слоя CA1 в качестве примера. Метод основан на новаторской прошлой работе Эрикbus и Марк Эллисман10,11. Астроциты из слегка фиксированных ломтиков мозга идентифицируются по их отличительной форме сомы и заполнены LY. Клетки затем изображены с конфокальной микроскопией. Мы демонстрируем, как ионтофорес LY может быть использован для реконструкции отдельных астроцитов и проведения детального морфологического анализа их процессов и территории. Кроме того, этот метод может быть применен в сочетании с иммуногистохимии для выявления пространственных связей и взаимодействий между астроцитами и нейронами, другими глиальными клетками и сосудами мозга. Мы считаем, LY ионтофорез, чтобы быть очень подходящим инструментом для анализа морфологии в различных областях мозга и мыши модели здоровых или заболеваний условия7,12,13.
Метод, изложенный в настоящей статье, описывает способ визуализации морфологии астроцитов с помощью внутриклеточного ионтофореза ЛАЙ-красителя в слегка фиксированных ломтиках мозга. Есть несколько критических факторов, отмеченных в этом протоколе, которые способствуют успешной ион?…
The authors have nothing to disclose.
Авторы благодарят г-жу Сото, д-ра Yu и д-ра Октко за рекомендации, а также за комментарии к тексту. Эта работа поддерживается NS060677.
10% Buffered Formalin Phosphate | Fisher | SF 100-20 | An identical alternative can be used |
Acrodisc Syringe Filters with Supor Membrane | Pall | 4692 | An identical alternative can be used |
Ag/AgCl ground pellet | WPI | EP2 | A similar alternative can be used |
Alexa Fluor 546 goat anti-chicken IgG (H+L) | Thermo Scientific | A-11040 | A similar alternative can be used |
Alexa Fluor 647 goat anti-rabbit IgG (H+L) | Thermo Scientific | A27040 | A similar alternative can be used |
Anti Aquaporin-4 antibody | Novus Biologicals | NBP1-87679 | A similar alternative can be used |
Anti GFAP antibody | Abcam | ab4674 | A similar alternative can be used |
Borosilicate glass pipettes with filament | World precision instruments | 1B150F-4 | |
C57BL/6NTac mice | Taconic Stock | B6 | A similar alternative can be used |
Calcium Chloride | Sigma | 21108 | An identical alternative can be used |
Confocal laser-scanning microscope | Olympus | FV1000MPE | A similar alternative can be used |
D-glucose | Sigma | G7528 | An identical alternative can be used |
Disodium Phosphate | Sigma | 255793 | An identical alternative can be used |
Electrode puller- Model P-97 | Sutter | P-97 | A similar alternative can be used |
Fluoromount-G | Southern Biotech | 0100-01 | An identical alternative can be used |
Heparin sodium injection (1,000 USP per mL) | Sagent Pharmaceuticals | 400-10 | An identical alternative can be used |
Imaris software (Version 7.6.5) | Bitplane Inc. | A similar alternative can be used | |
Isofluorane | Henry Schein Animal Health | 29404 | An identical alternative can be used |
Lidocaine Hydrochloride Injectable (2%) | Clipper | 1050035 | An identical alternative can be used |
Lucifer Yellow CH dilithium salt | Sigma | L0259 | |
Lucifer Yellow CH dipotassium salt | Sigma | L0144 | |
Magnesium Chloride | Sigma | M8266 | An identical alternative can be used |
Microscope Cover Glass | Thermo Scientific | 24X60-1 | An identical alternative can be used |
Microscope Slides | Fisher | 12-544-2 | An identical alternative can be used |
Normal Goat Serum | Vector Laboratories | S-1000 | An identical alternative can be used |
Objective lens (40x) | Olympus | LUMPLFLN 40XW | A similar alternative can be used |
Objective lens (60x) | Olympus | PlanAPO 60X | A similar alternative can be used |
PBS tablets, 100 mL | VWR | VWRVE404 | An identical alternative can be used |
Pipette micromanipulator- Model ROE-200 | Sutter | MP-285 / ROE-200 / MPC-200 | A similar alternative can be used |
Potassium Chloride | Sigma | P3911 | An identical alternative can be used |
Sodium Bicarbonate | Sigma | S5761 | An identical alternative can be used |
Sodium Chloride | Sigma | S5886 | An identical alternative can be used |
Stimulator- Model Omnical 2010 | World precision instruments | Omnical 2010 | A similar alternative can be used |
Triton X 100 | Sigma | T8787 | An identical alternative can be used |
Vibratome- Model #3000 | Pelco | 100-S | A similar alternative can be used |