Ici, nous décrivons la synthèse des liposomes drug-charged et de leur microinjection dans le poisson zèbre larvaire dans le but de cibler l’administration de drogue aux cellules de macrophage-lignée.
Les larves de poisson zèbre (Danio rerio) sont devenues un modèle populaire pour étudier les interactions hôte-pathogène et la contribution des cellules immunitaires innées aux maladies inflammatoires en raison de leur système immunitaire inné fonctionnellement conservé. Ils sont également largement utilisés pour examiner comment les cellules immunitaires innées aident à guider les processus de développement. En tirant parti de la transparence optique et de la tractabilité génétique du poisson zèbre larvaire, ces études se concentrent souvent sur des approches d’imagerie vivante pour caractériser fonctionnellement les macrophages et les neutrophiles fluorescents marqués chez les animaux intacts. En raison de leur hétérogénéité fonctionnelle diverse et de leurs rôles sans cesse croissants dans la pathogénie de la maladie, les macrophages ont reçu une attention considérable. En plus des manipulations génétiques, les interventions chimiques sont maintenant couramment utilisées pour manipuler et examiner le comportement des macrophages chez les poissons zèbres larvaires. L’administration de ces médicaments se limite généralement au ciblage passif de médicaments gratuits par immersion directe ou microinjection. Ces approches reposent sur l’hypothèse que tout changement au comportement de macrophage sont le résultat d’un effet direct du médicament sur les macrophages eux-mêmes, et non pas une conséquence en aval d’un effet direct sur un autre type de cellule. Ici, nous présentons nos protocoles pour cibler les médicaments spécifiquement aux macrophages de poissons zèbres larvaires en microinjectant des liposomes fluorescents chargés de médicaments. Nous révélons que les liposomes fluorescents bleus 188-modifiés de poloxamer-chargés de drogue sont facilement pris par des macrophages, et pas par des neutrophiles. Nous fournissons également la preuve que les médicaments livrés de cette façon peuvent avoir un impact sur l’activité des macrophages d’une manière compatible avec le mécanisme d’action du médicament. Cette technique sera utile aux chercheurs qui veulent assurer le ciblage des médicaments aux macrophages et lorsque les médicaments sont trop toxiques pour être livrés par des méthodes traditionnelles comme l’immersion.
Le système de phagocytemono mononucléaire fournit une première ligne de défense contre les agents pathogènes envahissants. Ce système se compose de monocytes, de cellules dendritiques dérivées de monocytes et de macrophages, qui phagocytos activement les agents pathogènes étrangers, limitant ainsi la propagation des agents pathogènes. En plus de ces fonctions d’effectrice phagocytique et microbicides, les cellules dendritiques et les macrophages sont également capables de produire de la cytokine et de présenter des antigènes pour activer le système immunitaire adaptatif1. Parmi ces cellules, les macrophages ont reçu une attention particulière en raison de leur hétérogénéité fonctionnelle diversifiée et de leur implication dans de multiples maladies inflammatoires, de l’auto-immunité et des maladies infectieuses au cancer2,3,4,5,6,7. La plasticité des macrophages et leur capacité à s’adapter fonctionnellement aux besoins de leur environnement tissulaire nécessite des approches expérimentales pour observer et interroger directement ces cellules in vivo.
Le poisson zèbre larvaire est un organisme modèle idéal pour étudier la fonction et la plasticité des macrophages in vivo8. La transparence optique du poisson zèbre larvaire offre une fenêtre pour observer directement le comportement des macrophages, en particulier lorsqu’il est couplé avec des lignes de reporter transgéniques de marquage macrophage. Exploiter le potentiel d’imagerie en direct et la tractabilité expérimentale du poisson zèbre larvaire a conduit à de nombreuses idées significatives dans la fonction macrophage qui ont une pertinence directe à la maladie humaine9,10,11,12,13,14,15. Bon nombre de ces études ont également profité de la forte conservation de l’activité des drogues chez le poisson zèbre (un attribut qui sous-tend leur utilisation comme une plate-forme de découverte de médicaments animaux16,17,18), en utilisant des interventions chimiques pour manipuler pharmacologiquement la fonction macrophage. Jusqu’à présent, ces traitements pharmacologiques ont été pour la plupart administrés soit par immersion, ce qui exige que le médicament soit soluble dans l’eau, soit par microinjection directe de médicaments gratuits (Figure 1A). Les limites de ces stratégies d’administration passive comprennent des effets hors cible et une toxicité générale qui peuvent empêcher d’évaluer tout impact sur la fonction de macrophage. En outre, lors de l’étude des effets des drogues sur les macrophages, on ne sait pas si les médicaments agissent sur les macrophages eux-mêmes ou par des mécanismes plus indirects. Lors de l’exécution d’études d’intervention chimique similaires pour étudier la fonction de macrophage, nous avons reconnu qu’il y avait un besoin non satisfait de développer une méthode d’administration peu coûteuse et simple pour cibler les médicaments spécifiquement aux macrophages.
Les liposomes sont des vésicules bicouches microscopiques, biocompatibles et lipidiques qui peuvent encapsuler les protéines, les nucléotides et la cargaison de médicaments19. La structure bicouche lipidique unilamellar ou multilamellar des liposomes forme un lumen intérieur aqueux où les drogues solubles dans l’eau peuvent être incorporées tandis que les drogues hydrophobes peuvent être intégrées dans les membranes lipidiques. En outre, les propriétés physicochimiques des liposomes, y compris la taille, la charge et les modifications de surface peuvent être manipulées pour adapter leur ciblage à des cellules spécifiques20,21. Ces caractéristiques des liposomes ont fait d’eux un véhicule attrayant pour livrer des médicaments et d’améliorer la précision des régimes de traitement actuels20. Comme les liposomes sont naturellement phagocytozed par les macrophages (une caractéristique exploitée par leur utilisation courante dans la livraison de clodronate spécifiquement aux macrophages pour les expériences d’ablation22), ils présentent comme une option attrayante pour l’administration de médicaments spécifiques aux macrophages (Figure 1B).
Ce protocole décrit la formulation des médicaments en liposomes fluorescents bleus recouverts du poloxamer 188 polymère hydrophile, qui forme une couche protectrice sur la surface liposome et a été montré pour augmenter la conservation de drogue et ont la biocompatibilité supérieure23. Poloxamer a été choisi pour le revêtement de surface des liposomes comme notre recherche précédente avait montré que, par rapport aux liposomes modifiés de polyéthylène glycol, les liposomes modifiés de poloxamer ont montré une meilleure biocompatibilité suivant l’injection sous-cutanée des pattes de rat et pharmacocinétique semblable dans les lapins suivant l’infusion intraveineuse23. Des protocoles sont également décrits pour leur microinjection dans le poisson zèbre larvaire et la formation image vivante pour évaluer leur capacité de ciblage de macrophage et la localisation aux compartiments intracellulaires nécessaires pour la dégradation de liposome et l’administration cytoplasmique de drogue. Comme preuve de concept, nous avons déjà utilisé cette technique pour cibler deux médicaments aux macrophages pour supprimer leur activation dans un modèle larvaire de poisson zèbre de l’inflammation goutte aigu24. Cette technique d’administration de médicaments élargit la « boîte à outils » chimique à la disposition des chercheurs sur le poisson zèbre qui veulent assurer le ciblage des macrophages de leurs médicaments d’intérêt.
Ici, nous avons fourni un protocole détaillé pour formuler des liposomes chargés de médicaments pour cibler spécifiquement les macrophages chez les poissons zèbres larvaires. Cette méthode peut être utilisée pour disséquer le rôle des macrophages dans certains modèles de maladies en assurant l’administration ciblée directe de médicaments spécifiquement aux macrophages. En outre, il peut être utilisé lorsque la toxicité générale des médicaments limite leur utilisation lorsqu’ils sont livrés par d…
The authors have nothing to disclose.
Ces travaux ont été soutenus par des subventions accordées à C.J.H. (Health Research Council of New Zealand and Marsden Fund, Royal Society of New Zealand) et Z.W. (Faculty Research Development Fund de l’Université d’Auckland). Les auteurs remercient Alhad Mahagaonkar pour la gestion experte de l’installation de poisson zèbre, de l’unité de recherche en imagerie biomédicale, de l’école des sciences médicales, de l’Université d’Auckland pour son aide en imagerie confocale et graham Lieschke d’avoir offert la ligne de journalistes Tg(mpeg1:EGFP).
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) | Avanti Polar Lipids, Inc. | 850355P | |
1,2-diseteroyl-sn-glycero-3-phosphocholine (DSPE) | Avanti Polar Lipids, Inc. | 850367P | |
1.0 µm Whatman Nuclepore Track-Etched polycarbonate membranes | GE Healthcare Life Sciences | 110610 | |
25 mL round-bottom flask | Sigma-Aldrich | Z278262 | |
35 mm culture dish | Thermo Scientific | 150460 | |
Acetonitrile | Sigma-Aldrich | 34998 | |
Agilent 1260 Infinity Diode Array Detector | Agilent Technologies | G4212B | |
Agilent 1260 Infinity Quaternary Pump | Agilent Technologies | G1311B | |
Agilent 1290 Infinity Series Thermostat | Agilent Technologies | G1330B | |
Avanti mini-extruder Avanti Polar Lipids Inc. | Avanti Polar Lipids Inc. | ||
borosilicate microinjection needles | Warner Instruments | 203-776-0664 | |
CaCl2 | Sigma-Aldrich | C4901-100G | |
cholesterol | Sigma-Aldrich | C8667 | |
Dumont No.5 fine tip forceps | Fine Science Tools | 11251-10 | |
Eppendorf Microloader pipette tip | Eppendorf | 5242956003 | |
Eppendorf SmartBlock 1.5 mL, thermoblock for 24 reaction vessels | Eppendorf | 4053-6038 | |
eyelash manipulator | Ted Pella Inc. | 113 | |
hemocytometer | Hawksley | BS.748 | |
HEPES | BDH Chemicals | 441474J | |
HPLC system | Agilent Technologies | 1260 series HPLC system | |
KCl | Sigma-Aldrich | P9541-1KG | |
low melting point agarose | Invitrogen | 16520-100 | |
LysoTracker Deep Red | Invitrogen | L12492 | 1 mM stock solution in DMSO, keep at -20 °C and protect from light. |
LysoTracker Deep Red | Thermo Scientific | L12492 | |
magnetic stand | Narishige | GJ-1 | |
Marina Blue 1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine (Marina Blue DHPE) | Invitrogen | M12652 | Keep at -20 °C and protect from light. |
Methanol | Sigma-Aldrich | 34860 | |
methyl cellulose | Sigma-Aldrich | M0387-500G | |
methylene blue | Alfa Aesar | 42771 | |
MgSO4 | Sigma-Aldrich | 230391-500G | |
micromanipulator | Narishige | M-152 | |
mineral oil | Sigma-Aldrich | M-3516 | |
Mitochondria-targeting antioxidant MitoTEMPO | Sigma-Aldrich | SML0737 | |
MitoSOX Red Mitochondrial Superoxide Indicator | Thermo Scientific | M36008 | |
MitoTEMPO | Sigma-Aldrich | SML0737 | Keep at -20 °C and protect from light. |
N-Phenylthiourea (PTU) | Sigma-Aldrich | P7629-10G | Take care when handling, toxic. |
NaCl | BDH Chemicals | 27810.295 | |
PBS (pH 7.4) | Gibco | 10010-023 | |
Petri dish (100 mm x 20 mm) | Corning Inc. | 430167 | |
Phenomenex C18 Gemini-NZ 3 mm 250 mm x 4.6 mm column | Phenomenex | 00G-4439-E0 | |
pHrodo Red Escherichia coli BioParticles Conjugate | Thermo Scientific | P35361 | |
pHrodo Red Escherichia coli BioParticles Conjugate | Invitrogen | P35361 | Keep at -20 °C and protect from light. Make 1 mg/mL stock solution by dissolving 2 mg lyophilized product in 2 mL of PBS supplemented with 20 mM HEPES, pH 7.4. |
plastic transfer pipette | Medi'Ray | RL200C | |
poloxamer 188 | BASF Corporation | ||
pressure injector | Applied Scientific Instruments | MPPI-2 | |
rotary evaporator | Büchi, Flawil, Switzerland | Büchi R-215 Rotavapor | |
Scanning confocal microscope | Olympus | Olympus FV1000 FluoView | |
Sorvall WX+ Ultracentrifuge | Thermo Scientific | 75000090 | |
stereomicroscope | Leica | MZ12 | |
Tricaine | Sigma-Aldrich | A5040-25G | Make 4 mg/mL stock solution (in deionzed H2O) and keep at -20 °C. |
triton-X100 | Sigma-Aldrich | X100-100ML | |
Ultrasonic bath | Thermo Scientific | FB-11205 | |
Volocity Image Analysis Software | PerkinElmer | version 6.3 | |
water bath | |||
Zetasizer Nano | Malvern Instruments Ltd | Zetasizer Nano ZS ZEN 3600 |