Summary

脂質混合アッセイ用リポソームへの組換えショウジョウバエアラストシンの洗剤支援再構成

Published: July 03, 2019
doi:

Summary

生体膜融合は、特殊な融合タンパク質によって触媒されます。タンパク質のフソジェニック特性の測定は、脂質混合アッセイによって達成することができる。ERの同質融合を媒実化するタンパク質である組換えショウジョウバエを精製し、あらかじめ形成されたリポソームに再構成し、融合能力を試験する方法を提示する。

Abstract

膜融合は真核細胞における重要なプロセスです。融合を触媒するには特殊なタンパク質が必要です。アラストリンは、ERの同質性融合に関与する小プラズム網膜(ER)常駐タンパク質である。ここでは、グルタチオンS-トランスフェラーゼ(GST)とポリヒスチジンタグドロソフィラアラストシンを2ラウンドの親和性クロマトグラフィーで精製する方法を詳述する。インビトロで融合反応を研究するには、精製された融合タンパク質を脂質二重層に挿入する必要があります。リポソームは、脂質組成物およびサイズが調整されてもよいとして、理想的なモデル膜である。そのために、予め形成されたリポソームにショウジョウバエのアラストリンに対する洗剤除去による再構成法について述べた。いくつかの再構成方法が利用可能であるが、洗剤除去による再構成は、アラストシンおよび他の同様のタンパク質に適しているいくつかの利点を有する。この方法の利点は、高い再構成収率および再構成されたタンパク質の正しい向きを含む。この方法は、他の膜タンパク質およびプロテオリポソームを必要とする他のアプリケーションに拡張することができる。さらに、膜融合の測定として用いられるプロテオリポソームのFRETベース脂質混合アッセイについて述べる。

Introduction

膜融合は、多くの生物学的反応において重要なプロセスです。生物学的条件下では、膜融合は自発的ではなく、そのような反応を触媒するために特殊な融合タンパク質を必要とする1.ERホモティピック膜融合は、ダイナミン関連GTPaseアラストシン2によって動物に媒介される。同質融合におけるアラストシンの役割は、末梢ERの三方接合部の基本であり、細胞全体に広がる管状の大規模な相互接続ネットワークを構成する。アラストニンは、大きなGTPase、3つのらせん束中ドメイン、疎水性膜アンカー、および短い細胞質C末端尾3からなる保存されたドメイン形態を有する。組換えショウジョウバエアラトミンを伴うインビトロ研究では、リポソームに再構成すると、そのフソジェニック特性を維持することが示されている。ヒトホモロを含む他のアラストチンは、インビトロでの融合を要約することができませんでした。ここでは、GSTとポリヒスチジンを精製する方法論について、アラストシンの組換えショウジョウバエをタグ付けし、リポソームに再構成し、融合をアッセイする方法論を説明する。

インビトロでの膜融合の研究は、通常、フソジェニックタンパク質が膜アンカーを持っているため、課題を提示します。それらを研究するためには、モデル脂質二重層にそれらを再構成する必要があります。大きなユニラメラ小胞(LUV)は、脂質タンパク質相互作用を研究するのに有用なツールです。ここでは、タンパク質再構成および融合アッセイ用の異なる脂質組成物のLuVを作るシステムを提示する。LUVへの一体タンパク質の再構成は、有機溶媒媒介性再構成、機械的メカニズム、または洗剤支援再構成4を含む様々な方法によって達成することができる。ここでは、洗剤除去により予め形成されたリポソームにショウジョウバエのアラストシンを再構成する方法を提示する。この再構成法の利点は、高い再構成収率と脂質二重層におけるアラストシンの適切な配向を含む。さらに、この方法を通じて、タンパク質は乾燥したり有機溶媒にさらされたりせず、構造や機能を維持します。その欠点の中で、洗剤の存在はすべてのタンパク質に理想的ではない可能性があり、最終的なプロテオリポソームは、脂質二重層に何らかの洗剤を組み込む可能性があります。さらに透析は、より多くの洗剤を排除するために使用されてもよい。しかし、透析には時間がかかるため、タンパク質活性が失われる可能性があります。

アラストシンの融合活性を評価することは、前述の2として脂質混合アッセイによって決定することができる。ここでは、N-(7-ニトロベンツ-2-オキサ-1,3-ジアゾル-4-yl(NBD)/リッサミンローダミンBスルホニル(ローダミン)標識脂質を介したアラストイン媒介融合を測定する方法を用いて述記する。このアッセイは、ドナー(標識された)プロテオリポソームと受諾器(ラベルなし)プロテオリポソームの融合を必要とする。FRET放出は、膜融合中の脂質混合の結果として、「標識された」リポソームから「標識されていない」リポソームへのドナー-受諾ペアの希釈として反応中に測定することができる(図1)5。このアッセイは膜融合の代理として機能するが、膜融合とヘミフュージョン(外側のリーフレットのみが混在する状態)を区別することに制限がある。この問題に対処するために、代替案は、ジチオニテによるNBDの外側のリーフレットクエンチングである。NBD/ロダミン脂質混合アッセイと同様の方法論に続いて、融合による任意のNBD FRET放出を外側のリーフレットを消光すると、内部リーフレット混合8に起因する。

内部水性含有量混合による代替融合アッセイアドレスフルフュージョンのみ5.その例としては、テルビウム(Tb)/ジピコリン酸(DPA)アッセイおよびアミノナフタレントリスルホン酸(ANTS)/p-キシレンビス(ピリジニウム)臭化物(DPX)アッセイがあります。Tb/DPAアッセイでは、カプセル化されたTbを持つリポソームのプールが混合され、封入されたDPAとリポソームと融合されます。融合時に、蛍光は[Tb(DPA)3]3-キレート複合体6内のDPAからTbへの内部エネルギー伝達を介して増加する。対照的に、ANTS/DPXアッセイの場合、ANTS蛍光はDPX7によって消光されます。これらのシステムは内部含有量の混合に対処する一方で、非カプセル化試薬の除去、ならびに蛍煙素の意図しない相互作用のために、リポソームのより詳細な調製が必要である。

Protocol

1. GST-DAtl-His8の精製 タンパク質発現とリサート製剤 pGEX4-T32のGST-DAtl-His8コンストラクトでBL21(DE3)大腸菌を変換し、アンピシリンプレート上で選択します。 14 mL培養チューブでLB+アンピシリン(100mg/mLアンピシリンの5μL)を単一の形質転換体を選択し、6-8時間の200rpmで振盪して25°Cでインキュベートします。注:漏れ発現のため、よ?…

Representative Results

アラストシン再構成の効率を図2に示す。再構成されたプロテオリポソームは、イオエクソール不連続勾配で浮動させた。未組み込みタンパク質は、底層(B)または中間層(M)に堆積させた。再構成されたタンパク質は、最上層(T)に浮動するであろう。グラデーションのサンプルをSDS-PAGEおよびクーマシー染色によって採取し、分析した。デンシトメトリーによるゲルの定量?…

Discussion

ここでの方法は、アラストシン組換えの核融合活性を精製、再構成、測定するための効率的な方法を示す。機能的なアラストインの高い収率を確保するためにいくつかの重要なステップを考慮する必要があります。.アラストシンの発現は、凝集を避けるために低温(16°C)で行う必要があり、1つは0.4〜1.5 mg/mLの間の最終的な濃度を目指す必要があります。非常に希薄なタンパク質は、脂質比に?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

私たちは、マイケル・スターン博士と彼の研究室に対して、アラストイン関連プロジェクトに関する洞察とフィードバックに感謝します。この研究は、国立総合医学研究所[R01GM101377]と国立神経障害・脳卒中研究所[R01NS102676]によって支援されました。

Materials

10 mL poly-prep chromatography columns Biored 731-1550
10 x 75 mm Flint glass tubes VWR 608225-402
47 mm diameter, 0.45um pore whatman sterile membrane filters Whatman 7141 104
96 well white plate NUNC 437796
Anapoe X-100 Anatrace 9002-931-1
Cell disrupter Avestin Avestin Emulsiflex C3
DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt)) Avanti 840035P-10mg DOPS
EDTA Research organics inc. 6381-92-6 Ethylenediaminetetraacetic acid
EDTA-free protease inhibitor cocktail Roche 11873580001 Complete protease inhibitor
Extruder Sigma Aldrich Z373400  Liposofast Basic Extruder
GE Akta Prime liquid chromatography system GE Pharmacia 8149-30-0006
Glutathione agarose beads Sigma aldrich G4510-50ml
Glycerol EMD GX0185-5
GTP Sigma Aldrich 36051-31-7 Guanosine 5' triphosphate sodium salt hydrate
HEPES, acid free Omnipur 5330
Imidazole fluka 5670
Immobilized metal affinity chromatography (IMAC) resin column GE Healthcare 17040801 1 mL HiTrap Chelating HP immobilized metal affinity chromatography columns
Iohexol Accurate chemical and scientific corporation AN 7050 BLK Accudenz/Nycodenz
IPTG Research products international corp. I56000-100.0 IPTG, dioxane free
L-Glutathione reduced Sigma-Aldrich G4251-5g
Magnesium chloride Fisher 7791-18-6
Methanol Omnisolv MX0488-1
NBD-DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt)) Avanti 236495 NBD-DPPE
n-Dodecyl β-D-maltoside Chem-Impex International 21950
Nonpolar polystyrene adsorbent beads BioRad 152-3920 SM2 Biobeads
Nuclepore track-etch polycarbonate 19 mm 0.1 um pore membrane Whatman 800309
Optima LE80K Ultra centrifuge Beckman Coulter
Phosphatidylcholine, L-α-dipalmitoyl [choline methyl-3H] ARC ART0284 Titriated lipids
Plate reader TECAN TECAN infinite M200 plate reader
POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) Avanti 850457C-25mg POPC
Potassium chloride MP 151944
Rh-DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt)) Avanti 236495 Rh-DPPE
Scintillation Cocktail National Diagnostics LS-272 Ecoscint XR Scintillation solution for aqueous or non-aqueous samples
Scintillation vials Beckman 592928 Fast turn cap Mini Poly-Q Vial
Thrombin Sigma T1063-1kU Thrombin from human plasma
Triton X-100 Fisher BP151-500
Ultra-clear centrifuge tubes 5 x 41 mm Beckman 344090
Vortex 9 to 13mm Tube Holder VWR 58816-138 Insert for vortexing flint glass tubes
Vortex Insert Retainer VWR 58816-132 Retainer needed for vortex tube holder
Vortexer VWR 2.235074 Vortex Genie 2 model G560
β-mercaptoethanol molecular biology grade Calbiochem 444203

References

  1. Chernomordik, L. V., Kozlov, M. M. Mechanics of membrane fusion. Nature Structural and Molecular Biology. 15, 675-683 (2008).
  2. Orso, G., et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature. 460, 978-983 (2009).
  3. McNew, J. A., Sondermann, H., Lee, T., Stern, M., Brandizzi, F. GTP-dependent membrane fusion. Annual Review of Cell and Developmental Biology. 29, 529-550 (2013).
  4. Rigaud, J. L., Pitard, B., Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1231, 223-246 (1995).
  5. Düzgüneş, N. Fluorescence Assays for Liposome Fusion. Methods in Enzymology. 372, 260-274 (2003).
  6. Wilschut, J., Duzgunes, N., Fraley, R., Papahadjopoulos, D. Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry. 19, 6011-6021 (1980).
  7. Ellens, H., Bentz, J., Szoka, F. C. Proton- and calcium-induced fusion and destabilization of liposomes. Biochemistry. 24, 3099-3106 (1985).
  8. Meers, P., Ali, S., Erukulla, R., Janoff, A. S. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1467, 277-243 (2000).
  9. Schaffner, W., Weissmann, C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Analytical Biochemistry. 56, 502-514 (1973).
  10. MacDonald, R. C., et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochimica Et Biophysica Acta. 1061, 297-303 (1991).
  11. Paternostre, M. T., Roux, M., Rigaud, J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 27, 2668-2677 (1988).
  12. Scott, B. L., et al. Liposome Fusion Assay to Monitor Intracellular Membrane Fusion Machines. Methods in Enzymology. 372, 274-300 (2003).
  13. Zhang, W., et al. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association. PNAS. 114, 8550-8555 (2017).
  14. Parlati, F., et al. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. PNAS. 96, 12565-12570 (1999).
  15. Sugiura, S., Mima, J. Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p. Scientific Reports. 6, 20407 (2016).
  16. Powers, R. E., Wang, S., Liu, T. Y., Rapoport, T. A. Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature. 543, 257-260 (2017).
  17. Betancourt-Solis, M. A., Desai, T., McNew, J. A. The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. Journal of Biological Chemistry. 293, 18514-18524 (2018).

Play Video

Cite This Article
Betancourt-Solis, M. A., McNew, J. A. Detergent-assisted Reconstitution of Recombinant Drosophila Atlastin into Liposomes for Lipid-mixing Assays. J. Vis. Exp. (149), e59867, doi:10.3791/59867 (2019).

View Video