Технология CRISPR-Cas9 обеспечивает эффективный метод точного редактирования генома млекопитающих в любом типе клеток и представляет собой новое средство для выполнения генетических экранов генома. Здесь представлен подробный протокол, в котором обсуждаются шаги, необходимые для успешного выполнения объединенных экранов CRISPR-Cas9, в масштабах всего генома.
Редактирование генома с помощью системы CRISPR-Cas значительно повысило способность точно редактировать геномы различных организмов. В контексте клеток млекопитающих, эта технология представляет собой новое средство для выполнения генома всей генетические экраны для функциональных исследований геномики. Библиотеки направляющих РНК (sgRNA), ориентированные на все открытые кадры чтения, позволяют легкому поколению тысяч генетических возмущений в одном пуле клеток, которые могут быть проверены на конкретные фенотипы для вовлечения функции гена и клеточных процессов в беспристрастной и систематической образом. Экраны CRISPR-Cas предоставляют исследователям простой, эффективный и недорогой метод раскрытия генетических чертежей клеточных фенотипов. Кроме того, дифференциальный анализ экранов, выполняемых в различных клеточных линиях и из различных типов рака, может определить гены, которые имеют контекстуально важное значение в опухолевых клетках, выявляя потенциальные цели для конкретных противоопухолевых методов лечения. Выполнение геномных экранов в клетках человека может быть сложной задачей, так как это предполагает обработку десятков миллионов клеток и требует анализа больших наборов данных. Детали этих экранов, такие как характеристика клеточной линии, соображения библиотеки CRISPR и понимание ограничений и возможностей технологии CRISPR в ходе анализа, часто упускаются из виду. Приведен ный подробный протокол для успешного выполнения объединенных экранов на основе CRISPR-Cas9 в масштабах всего генома.
CRISPR-Cas, сокращение от кластерных регулярно межпространственных коротких палиндромных повторов и связанных с CRISPR нуклеаза, состоит из одного белка nuclease (например, Cas9) в комплексе с синтетической направляющей РНК (sgRNA). Этот комплекс рибонуклеопротеинов нацелен на фермент Cas9, чтобы вызвать двухцепочечные разрывы ДНК при специфическом геномном локусе1. Двухцепочечные перерывы могут быть отремонтированы с помощью гомологии направленного ремонта (HDR) или, чаще всего, через негомологическую конечную присоединение (NHEJ), механизм ремонта, подверженный ошибкам, который приводит к вставке и/или удалению (INDELS), которые часто нарушают функцию гена 1. Эффективность и простота CRISPR позволяет ранее недостижимый уровень геномного таргетинга, что намного превосходит предыдущие технологии редактирования генома, т.е. цинковый палец nucleases (ЗНФ) или транскрипции активатор-как эффектор nucleases ( TALENS), оба из которых страдают от повышенной сложности конструкции, более низкой эффективности трансфекции, и ограничения в мультиплексном редактированиигенов 2.
Основное исследовательское применение однонаправного редактирования генома на основе РНК позволило ученым эффективно и недорого изучить функции отдельных генов и топологию генетических сетей взаимодействия. Способность выполнять функциональные экраны генома была значительно расширена с помощью системы CRISPR-Cas, особенно по сравнению с более ранними генетическими технологиями возмущения, такими как РНК-интерференция (РНК) и мутагенез генной ловушки. В частности, RNAi страдает от высоких вне цели эффекты и неполный нокдаун, в результате чего более низкая чувствительность и специфичность по сравнению с CRISPR3,4,5, в то время как методы генной ловушки являются возможными только в гаплоидных ячейки для экранов потери функций, ограничивающих область клеточных моделей, которые могут быть допрошены6. Способность CRISPR генерировать полный выбив из генов обеспечивает более биологически надежную систему для допроса мутантных фенотипов, с низким уровнем шума, минимальными эффектами вне цели и последовательной активностью реагентов5. CRISPR-Cas9 sgRNA библиотеки, которые ориентированы на весь геном человека в настоящее время широко доступны, что позволяет одновременное поколение тысяч генов нокаутов в одном эксперименте3,7,8,9 .
Мы разработали уникальные библиотеки scgRNA по всей геному CRISPR-Cas9, называемые библиотеками Toronto Knock-out (TKO) (доступны через Addgene), которые компактны и оптимизированы последовательность для облегчения функционального геномики высокого разрешения экранов. Последняя библиотека, TKOv3, ориентирована на 18 000 человеческих генов кодирования белка с 71 090 направляющих, оптимизированных для редактирования эффективности с использованием эмпирических данных10. Кроме того, TKOv3 доступен в качестве однокомпонентной библиотеки (LCV2:::TKOv3, Addgene ID #90294), выражающей Cas9 и sgRNA на одном векторе, облегчая необходимость создания стабильных клеток Cas9- Expressing, что позволяет нокаутировать геном по широкому кругу типы клеток млекопитающих. TKOv3 также доступен в векторе без Cas9 (pLCKO2::TKOv3, Addgene ID 125517) и может быть использован в ячейках, которые выражают Cas911.
Геном всей CRISPR-Cas9 редактируемых клеток населения может подвергаться различным условиям роста, с обилием sgRNAs с течением времени количественно следующего поколения секвенирования, обеспечивая считывание для оценки отсева или обогащения клеток с прослеживаемыми генетическими Возмущений. Библиотеки выбивания CRISPR могут быть использованы для определения генов, которые, после возмущения, вызывают дефекты клеточного фитнеса, умеренную чувствительность к лекарственным препаратам (например, чувствительные или устойчивые гены), регулировать экспрессию белка (например, репортер) или необходимы для определенного функции пути и клеточного состояния12,13,14. Например, дифференциальные фитнес-экраны в линии раковых клеток могут выявить как истощение, так и уменьшение онкогенов и обогащения или увеличение генов супрессоров опухолей3,14,15. Аналогичным образом, использование промежуточных доз терапевтических препаратов может выявить как лекарственной устойчивости и сенсибилизации генов16,17.
Приведенный здесь подробный протокол скрининга для генома масштаба CRISPR-Cas9 потери функции скрининга с использованием Торонто Knock-out библиотек (TKOv1 или v3) в клетках млекопитающих от библиотеки поколения, скрининг производительности для анализа данных. Хотя этот протокол был оптимизирован для скрининга с использованием библиотек Toronto Knock-out, он может быть применен и масштабируемым для всех объединенных библиотек CRISPR sgRNA.
Благодаря простоте использования и высокой гибкости, технология CRISPR была широко принята в качестве инструмента выбора для точного редактирования генома. Объединенный скрининг CRISPR предоставляет метод для допроса тысяч генетических возмущений в одном эксперименте. В объединенных экр?…
The authors have nothing to disclose.
Эта работа была поддержана Геномканады, Исследовательским фондом Онтарио и Канадскими институтами исследований в области здравоохранения (MOP-142375, PJT-148802).
0.22 micron filter | |||
30°C plate incubator | |||
37°C shaking incubator | |||
37°C, 5% CO2 incubator | |||
5 M NaCl | Promega | V4221 | |
50X TAE buffer | BioShop | TAE222.4 | |
6 N Hydrochloric acid solution | BioShop | HCL666.500 | |
95% Ethanol | |||
Alamar blue | ThermoFisher Scientific | DAL1025 | |
Blue-light transilluminator | ThermoFisher Scientific | G6600 | |
Bovine Serum Albumin,Heat Shock Isolation, Fraction V. Min. 98%, Biotechnology grade | Bioshop | ALB001.250 | |
Dulbecco's Modification of Eagles Medium | Life Technologies | 11995-065 | Cel culture media |
Electroporation cuvettes | BTX | 45-0134 | |
Electroporator | BTX | 45-0651 | |
Endura electrocompetent cells | Lucigen | 90293 | |
Fetal Bovine Serum | GIBCO | 12483-020 | |
HEK293T packaging cells | ATCC | CRL-3216 | recommend passage number <15 |
Hexadimethrine Bromide (Polybrene) | Sigma | H9268 | Cationic polymer to enhance transduction efficiency |
Hexadimethrine Bromide (Polybrene) | |||
LB agar plates with carbenicillin | |||
LB medium with carbenicillin | |||
Low molecular weight DNA ladder | New England Biolabs | N3233S | |
Nanodrop spectrophotometer | ThermoFisher Scientific | ND-ONE-W | |
NEBNext Ultra II Q5 Master Mix | New England Biolabs | M0544L | |
Opti-MEM | Life Technologies | 31985-070 | Reduced serum media |
Plasmid maxi purification kit | Qiagen | 12963 | |
pMD2.G (envelope plasmid) | Addgene | Plasmid #12259 | lentiviral system |
psPAX2 (packaging plasmid) | Addgene | Plasmid #12260 | lentiviral system |
Puromycin | Wisent | 400-160-UG | |
QIAquick gel extraction kit | Qiagen | 28704 | |
Qubit dsDNA BR assay | ThermoFisher Scientific | Q32853 | |
Qubit fluorometer | ThermoFisher Scientific | Q33226 | |
RNAse A | Invitrogen | 12091021 | |
S.O.C recovery medium | Invitrogen | 15544034 | |
SYRB Safe DNA gel stain | ThermoFisher Scientific | S33102 | |
Toronto KnockOut CRIPSR library (TKOv3) – Cas9 included | Addgene | Addgene ID #90203 | Genome-wide CRISPR library , includes Cas9, 71,090 sgRNA |
Toronto KnockOut CRIPSR library (TKOv3) – non-cas9 | Addgene | Addgene ID #125517 | Genome-wide CRISPR library, non-Cas9, 71,090 sgRNA |
Tris-EDTA (TE) solution, pH8.0 | |||
UltraPure agarose | ThermoFisher Scientific | 16500500 | |
Wizard genomic DNA purification kit | Promega | A1120 | |
X-tremeGENE 9 DNA transfection reagent | Roche | 06 365 809 001 | Lipid based transfection reagent |