Этот протокол детализирует монослой, метод без сыворотки для эффективного создания гепатоцитов, как клетки из человеческих плюрипотентных стволовых клеток (HPSCs) в 18 дней. Это влечет за собой шесть шагов, как hPSCs последовательно дифференцировать в промежуточных клеточных типов, таких как примитивные полосы, окончательный эндодерм, задний предтечут и печень бутон прародителей до формирования гепатоцитов, как клетки.
Печень детоксикации вредных веществ, выделяет жизненно важные белки, и выполняет ключевые метаболические деятельности, тем самым поддерживая жизнь. Следовательно, печеночная недостаточность, которая может быть вызвана хроническим потреблением алкоголя, гепатитом, острым отравлением или другими оскорблениями– является тяжелым заболеванием, которое может привести к кровотечению, желтухе, коме и, в конечном счете, смерти. Тем не менее, подходы к лечению печеночной недостаточности, а также исследования функции печени и болезни, были загнаны в тупик отчасти из-за отсутствия обильных поставок клеток печени человека. С этой целью в этом протоколе подробно описывается эффективная дифференциация плюрипотентных стволовых клеток человека (hPSCs) в гепатоцитные клетки, руководствуясь дорожной картой развития, которая описывает, как судьба печени определяется через шесть последовательных шагов дифференциации. Путем манипулировать путями сигнализации развития для того чтобы повысить дифференциацию печенки и точно подавить образование излишних судеб клетки, этот метод эффектно производит населенности потомков бутона печени человека и гепатоцит-как клетки днями 6 и 18 дифференциации PSC, соответственно. Это достигается за счет временно точного контроля путей сигнализации развития, оказываемого малыми молекулами и факторами роста в среде культуры, свободной от сыворотки. Дифференциация в этой системе происходит в монослойных и дает гепатоцитов, как клетки, которые выражают характерные ферменты гепатоцитов и имеют возможность привить мыши модель хронической печеночной недостаточности. Способность эффективно генерировать большое количество клеток печени человека in vitro имеет последствия для лечения печеночной недостаточности, для скрининга наркотиков, а также для механистических исследований заболеваний печени.
Цель этого протокола заключается в эффективной дифференцировать человека плюрипотентных стволовых клеток (hPSCs) в обогащенных популяций печени бутон прародителей и гепатоцитов, как клетки2. Доступ к готовым поставкам человеческих протеже печени и гепатоцитов, как клетки ускорят усилия по исследованию функции печени и болезни и может позволить новые клеточные трансплантации терапии для печеночной недостаточности3,4, 5. Это оказалось сложной задачей в прошлом, так как hPSCs (которые включают эмбриональных и индуцированных плюрипотентных стволовых клеток) может дифференцироваться во все клетки типов человеческого тела; следовательно, было трудно исключительно дифференцировать их в чистую популяцию одного типа клеток, таких как клетки печени6.
Для точнодифференцировать hPSCs в клетки печенки, сперва критическое для того чтобы понять not only как клетки печенки определены но также как non-liver клетк-типы превращаются. Знание как non-liver клетки превращаются важно логически подавить образование non-liver lineages во время дифференциации, тем самым исключительно направляя hPSCs к судьбе печенки2. Во-вторых, важно разграничивать многочисленные шаги развития, через которые hPSCs дифференцировать к судьбе печени. Известно, что hPSCs последовательно дифференцировать в несколько типов клеток, известных как примитивные полосы (APS), окончательный эндодерм (DE), задний предтечу (PFG) и печени зародытели (LB) до формирования гепатоцитов, как клетки (HEP). Более ранняя работа выявила сигналы, указывающие на судьбу печени и сигналы, которые подавляли образование альтернативных не-печенных клеточных типов (включая желудок, поджелудочной железы и кишечных прародителей) на каждом выборе линии развития2, 7 (г. , 8.
В совокупности, эти идеи привели к сыворотке свободной, монослой метод дифференцировать hPSCs к примитивной полосы, окончательный эндодерм, задний предтечу, печень бутон прародителей и, наконец, гепатоцитов, как клетки2. В целом метод включает в себя посев hPSCs в монослой при соответствующей плотности, подготовка шести коктейлей дифференциации средств (содержащих факторы роста и малых молекул, которые регулируют различные пути развития сигнализации), и последовательно добавляя эти средства массовой информации, чтобы вызвать дифференциацию в течение 18 дней. Во время процесса, не проходя клеток не требуется. Следует отметить, потому что этот метод явно включает в себя сигналы, которые подавляют образование не-печенных клеточных типов, этот подход дифференциации1 более эффективно генерирует печени прародителей и гепатоцитов, как клетки по сравнению с сохранившимся методы дифференциации2,9,10,11,12. Кроме того, протокол, описанный в этом тексте, позволяет быстрее выражать гепатоциты, которые в конечном счете выражают более высокие уровни печеночных транскрипционных факторов и ферментов, чем те, которые производятся другими протоколами9,10 , 11 Год , 12.
Описанный здесь протокол имеет определенные преимущества по сравнению с текущими протоколами дифференциации. Во-первых, это влечет за собой монослойную дифференциацию гПСК, что технически проще по сравнению с трехмерными методами дифференциации, такими как те, которые полагаются на эмбриональные тела13. Во-вторых, этот метод использует недавнее продвижение которой окончательные клетки эндодерма (ранний предшественник клеток печени) могут быть эффективно и быстро генерируется в течение 2 дней hPSC дифференциации2,7, таким образом, что позволяет последующее производство гепатоцитов с повышенной чистотой. В-третьих, в бок о бок сравнения, гепатоцитов, как клетки, производимые этим методом2 производят больше ALBUMIN и выразить более высокие уровни печеночной транскрипции факторов и ферментов по сравнению с гепатоцитов, производимых в других методах10, 11,12.
Этот метод позволяет выравнять из гПСК обогащенные популяции пенитобудников, а затем и гепатоцитов. Способность генерировать обогащенные популяции клеток печени человека имеет важное значение для практического использования таких клеток. Предыдущие методы генерации гепатоцитов из …
The authors have nothing to disclose.
Мы благодарим Бинг Лим за дискуссии и Стэнфордский институт биологии стволовых клеток и регенеративной медицины для поддержки инфраструктуры. Эта работа была поддержана Калифорнийским институтом регенеративной медицины (DISC2-10679) и Институтом стволовых клеток Стэнфорд-UC Berkeley Siebel (в L.T.A. и K.M.L.) и Стэнфордским Центром молекулярной и генетической медицины Бекмана, а также Anonymous, Семьи Бакстер и Дигенова (к K.M.L.).
Geltrex | Thermofisher Scientific | A1569601 | |
1:1 DMEM/F12 | Gibco | 11320033 | |
0.2 μm pore membrane filter | Millipore | GTTP02500 | |
mTeSR1 | Stem Cell Technologies | 5850 | |
Thiazovivin | Tocris Bioscience | 3845 | |
Accutase | Gibco or Millipore | Gibco A11105, Millipore SCR005 | |
IMDM, GlutaMAX™ Supplement | Thermofisher Scientific | 31980030 | |
Ham's F-12 Nutrient Mix, GlutaMAX™ Supplement | Thermofisher Scientific | 31765035 | |
KOSR, Knockout serum replacement | Thermofisher Scientific | 10828028 | |
Poly(vinyl alcohol) | Sigma-Aldrich | P8136 | |
Transferrin | Sigma-Aldrich | 10652202001 | |
Chemically Defined Lipid Concentrate | Thermofisher Scientific | 11905031 | |
human Activin | R&D | 338-AC | |
CHIR99201 | Tocris | 4423 | |
PI103 | Tocris | 2930/1 | |
human FGF2 | R&D | 233-FB | |
DM3189 | Tocris | 6053/10 | |
A83-01 | Tocris | 2939/10 | |
Human BMP4 | R&D | 314-BP | |
C59 | Tocris | 5148 | |
TTNPB | Tocris | 0761/10 | |
Forskolin | Tocris | 1099/10 | |
Oncostatin M | R&D | 295-OM | |
Dexamethasone | Tocris | 1126 | |
Ro4929097 | Selleck Chem | S1575 | |
AA2P | Cayman chemicals | 16457 | |
human recombinant Insulin | Sigma-Aldrich | 11061-68-0 |