Aqui, vamos discutir uma série de protocolos para indução e validação da senescência celular em culturas de células. Podemos focar diferentes estímulos indutores senescência e descrever a quantificação de marcadores comuns associadas a senescência. Nós fornecemos detalhes técnicos utilizando fibroblastos como modelo, mas os protocolos podem ser adaptados para vários modelos de celulares.
Senescência celular é um estado de prisão permanente ciclo celular ativado em resposta a diferentes estímulos nocivos. Ativação da senescência celular é uma marca registrada de diversas condições fisiopatológicas incluindo supressão de tumor, tecido, remodelação e envelhecimento. Os indutores da senescência celular na vivo caracterizam-se ainda mal. No entanto, uma série de estímulos pode ser usada para promover a senescência celular ex vivo. Entre eles, indutores de senescência mais comuns são exaustão replicative, ionizante e radiação não-ionizante, drogas genotóxicas, estresse oxidativo e demethylating e acetificar agentes. Aqui, iremos fornecer instruções detalhadas sobre como usar esses estímulos para induzir os fibroblastos em senescência. Este protocolo pode ser facilmente adaptado para diferentes tipos de células primárias e de linhagens celulares, incluindo as células cancerosas. Também descrevemos os métodos diferentes para a validação da indução da senescência. Em particular, focamos em medir a atividade da enzima lisossomal associada a senescência β-galactosidase (SA-β-gal), a taxa de síntese de DNA utilizando o ensaio de incorporação 5-ethynyl-2′-desoxiuridina (EdU), os níveis de expressão do ciclo celular p16 inibidores e p21 e a expressão e secreção de membros do fenótipo secretor Senescence-Associated (SASP). Finalmente, podemos fornecer resultados de exemplo e discutir aplicações desses protocolos.
Em 1961, Hayflick e Moorhead relataram que fibroblastos primários na cultura perdem seu potencial proliferativo após sucessivas passagens1. Este processo é causado pelo sequencial encurtamento dos telômeros após cada divisão celular. Quando os telômeros atingir um comprimento curto criticamente, eles são reconhecidos pela resposta DNA-danos (DDR) que ativa uma detenção irreversível da proliferação — também definida como senescência replicative. Senescência replicative é atualmente um dos muitos estímulos que são conhecidos por induzir a um estado de prisão permanente ciclo celular que reproduz células minúsculas de mitógenos e apoptotic sinais2,3. O programa de senescência normalmente é caracterizado por recursos adicionais, incluindo a alta atividade dos lisossomos, disfunção mitocondrial, alterações nucleares, rearranjos de cromatina, stress do retículo endoplasmático, danos ao DNA e uma senescência-associados o fenótipo secretor (SASP)3,4. As células senescentes têm múltiplas funções no corpo: desenvolvimento, ferida cura e tumor supressão2. Igualmente, eles são conhecidos por desempenhar um papel importante no envelhecimento e, paradoxalmente, em progressão de tumor5. Os efeitos negativos e parcialmente contraditórios, a senescência são frequentemente atribuídos a SASP6.
Recentemente, foi demonstrado que a eliminação de células senescentes de ratos leva a extensão de vida útil e a eliminação de muitos do envelhecimento características7,8,9,10,11, 12. da mesma forma, várias drogas têm sido desenvolvidas para também eliminar as células senescentes (senolytics) ou para direcionar o SASP13,14. O potencial terapêutico antienvelhecimento recentemente tem atraído mais atenção ao campo.
O estudo dos mecanismos associados à senescência celular e as projecções para intervenções farmacológicas dependem fortemente ex vivo modelos, particularmente em fibroblastos humanos primários. Embora existam algumas características comuns ativadas por indutores de diversas senescência, uma grande variabilidade do fenótipo de senescência é observado e dependente de vários factores, incluindo a célula tipo, o estímulo e o tempo ponto3,15, 16,17. É imperativo considerar a heterogeneidade para estudar e orientar células senescentes. Portanto, esse protocolo visa fornecer uma série de métodos utilizados para induzir a senescência em fibroblastos primários usando tratamentos diferentes. Como será explicado, os métodos podem ser facilmente adaptados para outros tipos de células.
Além de senescência replicative, descrevemos cinco outros tratamentos senescência de indução: ionizando radiação, radiação ultravioleta (UV), doxorrubicina, estresse oxidativo e alterações epigenéticas (nomeadamente promoção da acetilação da histona ou demetilação do ADN) . Ambos, radiação ionizante e radiação UV causam danos diretos do DNA e, com a dose apropriada, desencadear senescência18,19. Doxorrubicina também provoca senescência principalmente através de dano do ADN por intercalação no DNA e interromper a função de topoisomerase II e assim travar o DNA reparo mecanismos20. A expressão de genes essenciais para a senescência é normalmente controlada por acetilação da histona e metilação do DNA. Como consequência, inibidores de deacetilase de histona (por exemplo, o butirato de sódio e Santos) e DNA demethylating (por exemplo, 5-aza) agentes desencadear senescência em células normais21,22.
Finalmente, quatro dos marcadores mais comuns associados às células senescentes será explicado: atividade da senescência associado-β-galactosidase (SA-β-gal), taxa de síntese de DNA por ensaio de incorporação de EdU, superexpressão dos reguladores do ciclo celular e p21, p16 de inibidores da quinase cyclin-dependente e superexpressão e secreção de membros da SASP.
Os protocolos explicados aqui foram otimizados para fibroblastos humanos primários, particularmente células BJ e WI-38. Os protocolos para a senescência replicative, radiação ionizante e doxorrubicina, foram aplicados com sucesso para outros tipos de fibroblastos (HCA2 e IMR90) e em outros tipos de células (nomeadamente neonatais melanócitos e queratinócitos ou cardiomyocytes iPSC-derivado) em nosso laboratório. No entanto, adaptações para tipos de células adicionais podem ser otimizadas ajustando alguns deta…
The authors have nothing to disclose.
Agradecemos a membros do laboratório Demaria para discussões frutuosos e Thijmen van Vliet para compartilhar dados e protocolo sobre a senescência induzida por UV.
DMEM Media – GlutaMAX | Gibco | 31966-047 | |
Fetal Bovine Serum | Hyclone | SV30160.03 | |
Penicillin-Streptomycin (P/S; 10,000 U/ml) | Lonza | DE17-602E | |
Dimethyl Sulfoxide (DMSO) | Sigma-Aldrich | SC-202581 | |
Nuclease-Free Water (not DEPC-Treated) | Ambion | AM9937 | |
T75 flask | Sarstedt | 833911002 | |
Trypsin/EDTA Solution | Lonza | CC-5012 | |
PBS tablets | Gibco | 18912-014 | |
1.5 ml microcentrifuge tubes | Sigma-Aldrich | T9661-1000EA | |
Corning 15 mL centrifuge tubes | Sigma-Aldrich | CLS430791 | |
6-well plate | Sarstedt | 83.3920 | |
24-well plate | Sarstedt | 83.3922 | |
13mm round coverslips | Sarstedt | 83.1840.002 | |
Steriflip | Merck Chemicals | SCGP00525 | |
Cesium137-source | IBL 637 Cesium-137γ-ray machine | ||
UV radiation chamber | Opsytec, Dr. Göbel BS-02 | ||
Doxorubicin dihydrochloride | BioAustralis Fine Chemicals | BIA-D1202-1 | |
Hydrogen peroxide solution | Sigma-Aldrich | 7722-84-1 | |
5-aza-2’-deoxycytidine | Sigma-Aldrich | A3656 | |
SAHA | Sigma-Aldrich | SML0061 | |
Sodium Butyrate | Sigma-Aldrich | B5887 | |
X-gal (5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside) | Fisher Scientific | 7240-90-6 | |
Citric acid monohydrate | Sigma-Aldrich | 5949-29-1 | |
Sodium dibasic phosphate | Acros organics | 7782-85-6 | |
Potassium ferrocyanide | Fisher Scientific | 14459-95-1 | |
Potassium ferricyanide | Fisher Scientific | 13746-66-2 | |
Sodium Chloride | Merck Millipore | 7647-14-5 | |
Magnesium Chloride | Fisher Chemicals | 7791-18-6 | |
25% glutaraldehyde | Fisher Scientific | 111-30-8,7732-18-5 | |
16% formaldehyde (w/v) | Thermo-Fisher Scientific | 28908 | |
EdU (5-ethynyl-2’-deoxyuridine) | Lumiprobe | 10540 | |
Sulfo-Cyanine3 azide (Sulfo-Cy3-Azide) | Lumiprobe | D1330 | |
Sodium ascorbate | Sigma-Aldrich | A4034 | |
Copper(II) sulfate pentahydrate (Cu(II)SO4.5H2O) | Sigma-Aldrich | 209198 | |
Triton X-100 | Acros organics | 215682500 | |
TRIS base | Roche | 11814273001 | |
LightCycler 480 Multiwell Plate 384, white | Roche | 4729749001 | |
Lightcycler 480 sealing foil | Roche | 4729757001 | |
Sensifast Probe Lo-ROX kit | Bioline | BIO-84020 | |
UPL Probe Library | Sigma-Aldrich | Various | |
Human IL-6 DuoSet ELISA | R&D | D6050 | |
Bio-Rad TC20 | Bio-Rad | ||
Counting slides | Bio-Rad | 145-0017 | |
Dry incubator | Thermo-Fisher Scientific | Heratherm | |
Dimethylformamide | Merck Millipore | 1.10983 | |
Parafilm 'M' laboratory film | Bemis | #PM992 | |
Tweezers | |||
Needles |