Systemic and localized zebrafish infection models for human influenza A virus are demonstrated. Using a systemic infection model, zebrafish can be used to screen antiviral drugs. Using a localized infection model, zebrafish can be used to characterize host immune cell responses.
Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.
Secondo l'Organizzazione Mondiale della Sanità (OMS), i virus influenzali infettano il 5-10% degli adulti e il 20-30% dei bambini ogni anno e causano 3-5 milioni di casi di malattie gravi e fino a 500.000 morti in tutto il mondo 1. vaccinazioni annuali contro l'influenza rimangono l'opzione migliore per prevenire la malattia. Gli sforzi come il piano d'azione globale che hanno aumentato l'uso vaccino stagionale, la capacità di produzione di vaccini, e la ricerca e lo sviluppo in più potenti strategie vaccinali al fine di ridurre la morbilità e la mortalità associate con focolai di influenza stagionale 2. I farmaci antivirali come gli inibitori della neuraminidasi (ad esempio Zanamivir e Oseltamivir) sono disponibili in alcuni paesi e si sono dimostrati efficaci nei sintomi attenuanti, quando somministrato entro le prime 48 ore di insorgenza 3, 4, 5. Nonostante gli sforzi a livello mondiale, il contenimento dell'influenza stagionale outbreaks rimane una sfida formidabile in questo momento, come virus dell'influenza deriva antigenica spesso supera capacità attuali di adattarsi al cambiamento genoma del virus 6. strategie vaccinali di targeting di nuovi ceppi di virus devono essere sviluppate in anticipo e sono a volte resi meno di ottimale efficace a causa di cambiamenti imprevisti nei tipi di ceppi che alla fine predominano in una stagione influenzale. Per queste ragioni, vi è una chiara necessità di sviluppare strategie terapeutiche alternative per contenere le infezioni e riducendo la mortalità. Con il raggiungimento di una migliore comprensione delle interazioni ospite-virus, potrebbe essere possibile sviluppare nuovi farmaci anti-influenzali e terapie adiuvanti 7, 8.
L'host-influenza umana A interazione virus (IAV) è complessa. Diversi modelli animali di infezione umana IAV sono stati sviluppati in modo da ottenere una visione in l'interazione ospite-virus, inclusa,ing topi, cavie, ratti, criceti cotone, furetti e macachi 9. Oltre a fornire dati importanti che hanno migliorato la comprensione delle dinamiche di accoglienza-IAV, ogni organismo modello possiede svantaggi significativi che devono essere considerati quando si tenta di tradurre le scoperte in medicina umana. Ad esempio, i topi, che sono il modello più diffuso, non facilmente sviluppano sintomi di infezione IAV-indotte quando infettati con il virus dell'influenza umana isolati 9. Questo perché i topi non hanno il trofismo naturale per l'influenza umana isolati da cellule epiteliali del mouse esprimono alfa-2,3 legami acido sialico invece delle α-2,6 collegamenti acido sialico espressi sulle cellule epiteliali umane 10. Le proteine emoagglutinina presenti in IAV ceppi umani favorevolmente legano ed entrano cellule ospiti cuscinetto legami alfa-2,6 acido sialico attraverso endocitosi mediata dai recettori 9, 11, </sup> 12, 13. Di conseguenza, è ormai accettato che nello sviluppo di modelli murini per l'influenza umana, la cura deve essere presa per abbinare la tensione appropriata del mouse con il ceppo di influenza appropriata al fine di ottenere fenotipi di malattia che ricapitolano aspetti della malattia umana. In contrasto, cellule epiteliali del tratto respiratorio superiore furetti possiedono alfa-2,6 legami di acido sialico che assomigliano cellule umane 14. Furetti infetti condividono molte delle caratteristiche patologiche e cliniche osservate nella malattia umana, compresa la patogenicità e trasmissibilità del virus 14 di influenza umana e aviaria, 15. Essi sono anche altamente suscettibili di prove di efficacia del vaccino. Tuttavia, il modello furetto per l'influenza umana ha diversi svantaggi principalmente legati alla loro dimensione e il costo di allevamento che fanno acquisizione di statisticamente signifidati sopraelevazione impegnativi. Inoltre, furetti hanno già mostrato differenze nella farmacocinetica di droga, la biodisponibilità e tossicità che rendono l'efficacia di prova difficile. Ad esempio, i furetti presentano tossicità per il canale ionico M2 amantadina inibitore 16. Pertanto, è chiaro che nella scelta di un modello animale per studiare domande circa infezioni IAV umani, è importante considerare vantaggi e limiti intrinseci, e l'aspetto della interazione ospite-virus che è indagato.
Il zebrafish, Danio rerio, è un modello animale che fornisce opportunità uniche per studiare l'infezione microbica, ospiterà la risposta immunitaria, e potenziali terapie farmacologiche 17, 18, 19, 20, 21, 22, 23, <class = sup "xref"> 24, 25, 26, 27, 28. La presenza di acidi sialici α-2,6-legate sulla superficie delle cellule nel zebrafish suggerito la sua suscettibilità al IAV, che è stata confermata in studi infezione e ripreso in vivo utilizzando un ceppo reporter fluorescente di IAV 19. In zebrafish IAV-infetti, un aumento dell'espressione dei antivirali ifnphi1 e MXA trascrizioni indicato che una risposta immunitaria innata era stato stimolato, e la patologia visualizzato da zebrafish IAV-infettati, incluso edema e la distruzione dei tessuti, era simile a quella osservata nelle infezioni influenzali umani . Inoltre, la IAV inibitore della neuraminidasi antivirali Zanamivir mortalità limitata e ridotta la replicazione virale in zebrafish 19.
In questo rapporto, un protocollo per l'avvio del sistemainfezioni ic IAV in embrioni di zebrafish è descritto. Utilizzando Zanamivir a dosi clinicamente rilevanti come una prova di principio, è dimostrata l'utilità di questo zebrafish modello di infezione IAV per i composti di screening per l'attività antivirale. Inoltre, un protocollo per la generazione di un localizzata, epiteliale infezione IAV nel zebrafish nuotare vescica, un organo che è considerato anatomicamente e funzionalmente analogo al polmone mammiferi 21, 29, 30, 31, è descritto. Usando questo modello di infezione IAV localizzata, il reclutamento dei neutrofili al sito di infezione possono essere monitorati, consentendo indagini il ruolo della biologia dei neutrofili nelle infezioni IAV e l'infiammazione. Questi modelli zebrafish integrano modelli animali esistenti di infezioni IAV umane e sono particolarmente utili per testare piccole molecole e le risposte delle cellule immunitarie a causa della possibilità di una maggiore spotere Istituti statistici, capacità di moderata a test high-throughput, e le capacità per monitorare il comportamento delle cellule immunitarie e la funzione di luce-microscopia.
Per massimizzare i benefici ottenuti dall'utilizzo di un piccolo animale di modellare interazioni ospite-patogeno umano, è importante per inquadrare domande di ricerca e ipotesi di test che capitalizzare i vantaggi intrinseci del sistema modello. Come modello per l'infezione IAV umana, il pesce zebra ha diversi punti di forza, tra cui ad alta fecondità, chiarezza ottica, subordinazione al vaglio di farmaci, e la disponibilità di linee transgeniche che etichetta le cellule immunitarie come neutrofili. Il zebra…
The authors have nothing to disclose.
The authors wish to thank Mark Nilan for zebrafish care and maintenance and Meghan Breitbach and Deborah Bouchard for propagating NS1-GFP and determining IAV titers. This research was supported by NIGMS grant NIH P20GM103534 and the Maine Agricultural and Forest Experiment Station (Publication Number 3493).
Instant Ocean | Spectrum Brands | SS15-10 | |
100 x 25 mm sterile disposable Petri dishes | VWR | 89107-632 | |
Transfer pipettes | Fisherbrand | 13-711-7M | |
Tricaine- S (MS-222) | Western Chemical | ||
Borosilicate glass capillary with filament | Sutter Instrument | BF120-69-10 | |
Flaming/Brown micropipette puller | Sutter Instrument | P-97 | |
Agarose | Lonza | 50004 | |
Zanamivir | AK Scientific | G939 | |
Dumont #5 forceps | Electron Microscopy Sciences | 72700-D | |
Microloader tips | Eppendorf | 930001007 | |
Microscope immersion oil | Olympus | IMMOIL-F30CC | |
Microscope stage calibration slide | AmScope | MR095 | |
MPPI-3 pressure injector | Applied Scientific Instrumentation | ||
Stereo microscope | Olympus | SZ61 | |
Back pressure unit | Applied Scientific Instrumentation | BPU | |
Micropipette holder kit | Applied Scientific Instrumentation | MPIP | |
Foot switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic base | Applied Scientific Instrumentation | Magnetic Base | |
Phenol red | Sigma-Aldrich | P-4758 | |
Low temperature incubator | VWR | 2020 | |
SteREO Discovery.V12 | Zeiss | ||
Illuminator | Zeiss | HXP 200C | |
Cold light source | Zeiss | CL6000 LED | |
Glass-bottom multiwell plate, 24 well | Mattek | P24G-0-13-F | |
Confocal microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
Fluoview software | Olympus | ||
Prism v6 | GraphPad | ||
Influenza A/PR/8/34 (H1N1) virus | Charles River | 490710 | |
Influenza A X-31, A/Aichi/68 (H3N2) | Charles River | 490715 | |
Influenza NS1-GFP | Referenced in Manicassamy et al. 2010 | ||
Tg(mpx:mCherry) | Referenced in Lam et al. 2013 |