Summary

La producción de células madre pluripotentes a partir de células de ratón amniótico líquido mediante un sistema de transposón

Published: February 28, 2017
doi:

Summary

In this study, we generate induced pluripotent stem cells from mouse amniotic fluid cells, using a non-viral-based transposon system.

Abstract

Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Here, we produced iPS cells from mouse amniotic fluid cells, using a non-viral-based transposon system. All obtained iPS cell lines exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo. This strategy opens up the possibility of using cells from diseased fetuses to develop new therapies for birth defects.

Introduction

El diagnóstico prenatal es una importante herramienta clínica para evaluar enfermedades genéticas (es decir, aberraciones cromosómicas, enfermedades monogénicas o poligenéticos / multifactorial) y malformaciones congénitas (hernia diafragmática congénita es decir, lesiones pulmonares quísticas, onfalocele, gastrosquisis). El líquido amniótico (AF) las células son fáciles de obtener de forma rutinaria los procedimientos programados durante el segundo trimestre del embarazo (es decir, la amniocentesis y amniorreducción) o cesáreas 1, 2. La disponibilidad de las células AF de pacientes prenatales o neonatales ofrece la posibilidad de utilizar esta fuente para la medicina regenerativa, y varios investigadores investigó la posibilidad de tratar diferentes daños de tejidos o enfermedades utilizando una población de células madre aisladas de AF 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. La posibilidad de obtener fácilmente células AF de pacientes enfermos, en una ventana de tiempo en el que la enfermedad es a menudo estacionario, abre el camino a la idea de utilizar esta fuente de células para los propósitos de reprogramación. De hecho, las células madre pluripotentes inducidas (iPS) derivadas de células AF podrían diferenciarse en las células de interés para las pruebas de fármacos in vitro o para los enfoques de ingeniería de tejidos, con el fin de preparar una terapia adecuada específica del paciente antes del parto. Muchos estudios ya han demostrado la capacidad de las células AF para ser reprogramado y diferenciarse en una amplia gama de tipos de células 13, 14, 15, 16, 17 </ sup>, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27.

Desde el descubrimiento por Takahashi y Yamanaka 28 de células somáticas reprogramadas a través de la expresión forzada de cuatro factores de transcripción (Oct4, Sox2, Klf4 y CMYC), se han hecho progresos en el campo de la reprogramación. Teniendo en cuenta los diferentes métodos, podemos distinguir entre los enfoques virales y no virales. La primera espera que el uso de vectores virales (retrovirus y lentivirus), que tienen una alta eficiencia, pero silenciamiento generalmente incompleta del transgén retroviral, tanto con la consecuencia de una línea de células parcialmente reprogramado y el riesgo demutagénesis por inserción 29, 30, 31. El método no viral utiliza diferentes estrategias: es decir, plásmidos, vectores, ARNm, proteínas, transposones. La derivación de células iPS libres de secuencias transgénicas pretende eludir los efectos potencialmente nocivos de la expresión del transgen con fugas y la mutagénesis por inserción. Entre todas las estrategias no virales mencionados anteriormente, el sistema de transposón / transposasa PiggyBac (PB) requiere sólo las repeticiones terminales invertidas que flanquean un transgén y la expresión transitoria de la enzima transposasa para catalizar eventos de inserción o de escisión 32. La ventaja en el uso de transposones sobre otros métodos para la generación de células iPS es la posibilidad de obtener células iPS libre de vectores con un enfoque de vector no viral que muestra la misma eficacia de los vectores retrovirales. Esto es posible mediante escisión trace-menos de la codificación transposón integrado para la reprogramming siguientes factores de una nueva expresión transitoria de la transposasa en las células iPS 33. Dado que PB es eficiente en diferentes tipos de células 34, 35, 36, 37, es más adecuado para un enfoque clínico con respecto a los vectores virales, y permite la producción de células iPS sin xeno contrario a protocolos de producción virales actuales que utilizan xenobiótico condiciones, este sistema se utiliza para obtener células iPS a partir murino AF.

Aquí proponemos un protocolo detallado siguientes trabajos ya publicados para mostrar la producción de iPS a partir de células pluripotentes clones AF de ratón (células iPS-AF) 38.

Protocol

Todos los procedimientos fueron realizados de acuerdo con la ley italiana. muestras murino AF fueron cosechadas de los ratones gestantes en 13,5 días postcoital (DPC) de ratones C57BL / 6 ratones Tg (UBC-GFP) 30Scha / J llamada GFP. Producción 1. transposón NOTA: los vectores de expresión de transposones se generaron utilizando procedimientos de clonación estándar. El ADN plásmido para ratón AF células transfección se preparó usando kits comerciales. </p…

Representative Results

Para evaluar la capacidad de la reprogramación, se recogieron las células de ratón AF de fetos de ratones GFP. Las células fueron transfectadas con el plásmido de transposón circular PB-tetO2-IRES-OKMS, que expresa los factores Yamanaka (Oct4, Sox2, Klf4 y cmyc) vinculados a la proteína fluorescente mCherry de una manera inducible por doxiciclina, y revertir transactivador de tetraciclina (PB- CAG-rtTA) plásmidos junto con el plásmido de expresión de la transposasa (mPBase). C?…

Discussion

El método elegido para obtener la inducción de la pluripotencia es relevante para la seguridad clínica de células con respecto al trasplante a largo plazo. Hoy en día, existen varios métodos adecuados para la reprogramación. Entre los métodos no integrativos, la viral (SEV) vector Sendai es un virus de ARN que pueden producir grandes cantidades de proteína sin integrar en el núcleo de las células infectadas 40 y podría ser una estrategia para obtener células iPS. vectores SeV podría…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by CARIPARO Foundation Grant number 13/04 and Fondazione Istituto di Ricerca Pediatrica Città della Speranza Grant number 10/02. Martina Piccoli, Chiara Franzin and Michela Pozzobon are funded by Fondazione Istituto di Ricerca Pediatrica Città della Speranza. Enrica Bertin is funded by CARIPARO Foundation Grant number 13/04. Paolo De Coppi is funded by Great Ormond Street Hospital Children’s Charity.

Materials

100 mm Bacterial-grade Petri Dishes  BD Falcon 351029 For in vitro differentiation
2-mercaptoethanol  Sigma M6250 For mouse AF, iPS-AF cells and differentiation medium
Alexa568-conjugated goat anti-mouse IgM  Thermo Fisher Scientific A21043 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-goat IgG  Thermo Fisher Scientific A21468 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-rabbit IgG  Thermo Fisher Scientific A21442 Secondary antibody (immunofluorescence)
Alexa594-conjugated goat anti-mouse IgG  Thermo Fisher Scientific A11005 Secondary antibody (immunofluorescence)
Alkaline Phosphatase kit  Sigma 85L1 Alkaline Phosphatase  staining
Ampicillin Sigma A0166 For bacterial selection
Bovine Serum Albumin  Sigma A7906 BSA, for blocking solution. Diluted in PBS 1X
Chloroform Sigma C2432 For RNA extraction
DH5α cells Thermo Fisher Scientific 18265-017 Bacteria for cloning procedure
Dulbecco's Modified Eagle Medium (DMEM) Thermo Fisher Scientific 41965039 For MEF, mouse AF, iPS-AF cells and differentiation medium
Doxycycline  Sigma D9891 For exogenous factors expression
Microcentrifuge tubes (1.5 mL)  Sarstedt  72.706 For PB production 
ES FBS  Thermo Fisher Scientific 10439024 For mouse AF, iPS-AF cells and differentiation medium
FBS  Thermo Fisher Scientific 10270106 For MEF medium
Fine point forceps F.S.T Dumont #5  AF isolation
Gelatin J.T.Baker 131 Used 0.1%, diluted in PBS 1X
Glycine Bio-Rad 161-0718 For blocking solution. Diluted in PBS 1X
Haematoxylin QS Vector Laboratories H3404 Nuclei detection
HE  Bio-Optica 04-061010 Histological analysis of teratoma
Hoechst  Thermo Fisher Scientific H3570 Nuclei detection
Horse Serum  Thermo Fisher Scientific 16050-122 For blocking solution
HRP-conjugated goat anti-mouse IgG SantaCruz sc2005 Secondary antibody (immunoperoxidase)
ImmPACT NovaRED  Vector Laboratories SK4805 Peroxidase substrate
Insulin syringe with needle (25G) Terumo SS+01H25161 Amniocentesis procedure
Klf4  SantaCruz sc-20691 Rabbit polyclonal IgG
L-glutamine  Thermo Fisher Scientific 25030 For mouse AF, iPS-AF cells and differentiation medium
LB broth (Lennox) Sigma L3022 For bacterial growth
LIF  Sigma L5158 For mouse AF and iPS-AF cells medium
Matrigel  BD 354234 For in vitro differentiation. Diluted 1:10 in DMEM
Methanol Sigma 32213 Peroxidase blocking
MULTIWELL 24 well plate BD Falcon 353047 For in vitro differentiation
MULTIWELL 6 well plate BD Falcon 353046 For MEF, mouse AF and iPS-AF cells culture
Nanog  ReproCELL RCAB0002P-F Rabbit polyclonal IgG
Non-essential amino acids  Sigma M7145 For mouse AF, iPS-AF cells and differentiation medium
Normal Goat Serum Vector Laboratories S2000 For blocking solution. Diluted in PBS 1X
NP-40 Sigma 12087-87-0 For cell permeabilization. Diluted in PBS 1X
Oct4 SantaCruz sc-5279 Mouse monoclonal IgG2b
Oligo (dT)  Thermo Fisher Scientific 18418012 For RT-PCR
Paraformaldehyde (solution) Sigma 441244 PFA, fixative, diluted in PBS
PBS 10X Thermo Fisher Scientific 14200-067 D-PBS, free of Ca2+/Mg2+. Diluted with sterile water to obtain PBS 1X
Penicillin – Streptomycin  Thermo Fisher Scientific 15070063 For MEF, mouse AF, iPS-AF cells and differentiation medium
Petri Dish (150mm) BD Falcon 353025 For MEF culture, tissue culture
PiggyBac transposase expression plasmid  Provided by professor Andras Nagy laboratory mPBase
PiggyBac-tetO2-IRES-OKMS transposon plasmid Provided by professor Andras Nagy laboratory PB-tetO2-IRES-OKMS
QIAprep Spin Maxiprep Kit Qiagen 12663 For plasmids purification
QIAprep Spin Miniprep Kit Qiagen 27106 For plasmids purification
Reverse tetracycline transactivator transposon plasmid  Provided by professor Andras Nagy laboratory rtTA
RNeasy Mini Kit  Qiagen 74134 For RNA extraction
Sox2  SantaCruz sc-17320 Goat polyclonal IgG
SSEA1  Abcam ab16285 Mouse monoclonal IgM
SuperScript II Reverse Transcriptase  Thermo Fisher Scientific 18064-014 For RT-PCR
Abcam ab20680 Rabbit polyclonal IgG
Taq DNA Polymerase Thermo Fisher Scientific 10342020 PCR
Trypsin  Thermo Fisher Scientific 25300-054 Cell culture passaging
Triton X-100 Bio-Rad 161-047 For cell permeabilization, diluted in PBS 1X
TRIzol Reagent Thermo Fisher Scientific 15596-026 For RNA extraction
Tubb3   Promega  G712A Mouse monoclonal IgG1
TWEEN-20 Sigma P1379 For cell permeabilization, diluted in PBS 1X
αfp    R&D Systems MAB1368 Mouse Monoclonal IgG1
αSMA  Abcam ab7817 Mouse Monoclonal IgG2a
Transfection Reagent (FuGENE HD) Promega  E2311 For AF cells transfection
Stereomicroscope Nikon SM2645 To perform amniocentesis 
200 ul tips Sarstedt  70.760012 To pick bacteria colonies
Scissor F.S.T 14094-11 stainless 25U To perform amniocentesis 
Ethanol Sigma 2860 To clean the abdominal wall of the pregnant dam
Tissue culture petri dish (150 mm)  BD Falcon 353025 For MEF expansion
Mitomycin C Sigma M4287-2MG For MEF inactivation
MULTIWELL 96 well plate BD Falcon 353071 For iPS-AF culture

References

  1. You, Q., et al. Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. Int J Gynaecol Obstet. 103 (2), 149-152 (2008).
  2. Prusa, A. R., Hengstschlager, M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 8 (11), RA253-RA257 (2002).
  3. Ditadi, A., et al. Human and murine amniotic fluid c-Kit+ Lin- cells display hematopoietic activity. Blood. 113 (17), 3953-3960 (2009).
  4. Piccoli, M., et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 30 (8), 1675-1684 (2012).
  5. Zani, A., et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 63 (2), 300-309 (2014).
  6. Rota, C., et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 21 (11), 1911-1923 (2012).
  7. Mirabella, T., et al. Pro-angiogenic soluble factors from Amniotic Fluid Stem Cells mediate the recruitment of endothelial progenitors in a model of ischemic fasciocutaneous flap. Stem Cells Dev. 21 (12), 2179-2188 (2012).
  8. Mirabella, T., Cili, M., Carlone, S., Cancedda, R., Gentili, C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 32 (15), 3689-3699 (2011).
  9. Yeh, Y. C., et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials. 31 (25), 6444-6453 (2010).
  10. Kim, J. A., et al. MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther. 4 (6), 147 (2013).
  11. Vadasz, S., et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 49 (11), 1554-1563 (2014).
  12. Turner, C. G., et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 46 (1), 57-61 (2011).
  13. Galende, E., et al. Amniotic Fluid Cells Are More Efficiently Reprogrammed to Pluripotency Than Adult Cells. Cloning Stem Cells. 12 (2), 117-125 (2009).
  14. Li, C., et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 18 (22), 4340-4349 (2009).
  15. Ye, L., et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A. 106 (24), 9826-9830 (2009).
  16. Wolfrum, K., et al. The LARGE Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-Derived Human iPS Cells. PLoS ONE. 5 (10), 137-138 (2010).
  17. Ye, L., et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc Natl Acad Sci U S A. 107 (45), 19467-19472 (2010).
  18. Lu, H. E., et al. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp Cell Res. 317 (13), 1895-1903 (2011).
  19. Lu, H. E., et al. Modeling Neurogenesis Impairment in Down Syndrome with Induced Pluripotent Stem Cells from Trisomy 21 Amniotic Fluid Cells. Exp Cell Res. 319 (4), 498-505 (2012).
  20. Kobari, L., et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 97 (12), 1795-1803 (2012).
  21. Li, Q., Fan, Y., Sun, X., Yu, Y. Generation of Induced Pluripotent Stem Cells from Human Amniotic Fluid Cells by Reprogramming with Two Factors in Feeder-free Conditions. J Reprod Dev. 59 (1), 72-77 (2012).
  22. Fan, Y., Luo, Y., Chen, X., Li, Q., Sun, X. Generation of Human β-thalassemia Induced Pluripotent Stem Cells from Amniotic Fluid Cells Using a Single Excisable Lentiviral Stem Cell Cassette. J Reprod Dev. 58 (4), 404-409 (2012).
  23. Liu, T., et al. High efficiency of reprogramming CD34+ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev. 21 (12), 2322-2332 (2012).
  24. Jiang, G., et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 23 (21), 2613-2625 (2014).
  25. Drozd, A. M., et al. Generation of human iPSC from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 6 (122), (2015).
  26. Moschidou, D., et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with Valproic acid acquire pluripotent characteristics. Stem Cells Dev. 22 (3), 444-458 (2012).
  27. Moschidou, D., et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol Ther. 20 (10), 1953-1967 (2012).
  28. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  29. Mikkelsen, T. S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 454 (7200), 49-55 (2008).
  30. Sridharan, R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 136 (2), 364-377 (2009).
  31. Knight, S., Collins, M., Takeuchi, Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther. 13 (3), 211-227 (2013).
  32. Fraser, M. J., Ciszczon, T., Elick, T., Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol. 5 (2), 141-151 (1996).
  33. Woltjen, K., Kim, S. I., Nagy, A. The PiggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods Mol Biol. 1357, 1-22 (2015).
  34. Wu, S. C., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A. 103 (41), 15008-15013 (2006).
  35. Ding, S., et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122 (3), 473-483 (2005).
  36. Wang, W., et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 105 (27), 9290-9295 (2008).
  37. Cadiñanos, J., Bradley, A. Generation of an inducible and optimized PiggyBac transposon system. Nucleic Acids Res. 35 (12), e87 (2007).
  38. Bertin, E., et al. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system. Stem Cell Research. 15 (3), 510-513 (2015).
  39. Woltjen, K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458 (7239), 766-770 (2009).
  40. Fusaki, N., et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 85 (8), 348-362 (2009).
  41. Nishishita, N., et al. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PLoS One. 7 (9), e38389 (2012).
  42. Ono, M., et al. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One. 7 (8), e42855 (2012).
  43. Yant, S. R., et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol. 25 (6), 2085-2094 (2005).
  44. Wilson, M. H., Coates, C. J., George, A. L. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther. 15 (1), 139-145 (2007).
  45. Galvan, D. L., et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother. 32 (8), 837-844 (2009).
  46. Huang, X., et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther. 18 (10), 1803-1813 (2010).
  47. Meir, Y. J., et al. Genome-wide target profiling of PiggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol. 11 (28), (2011).
  48. Moretti, A., et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 363 (15), 1397-1409 (2010).
  49. Filareto, A., et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 4 (1549), (2013).
  50. Darabi, R., et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 10 (5), 610-619 (2012).

Play Video

Cite This Article
Bertin, E., Piccoli, M., Franzin, C., Nagy, A., Mileikovsky, M., De Coppi, P., Pozzobon, M. The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System. J. Vis. Exp. (120), e54598, doi:10.3791/54598 (2017).

View Video