Summary

La identificación de patógenos bacterianos raras por 16S rRNA gen secuenciación y MALDI-TOF MS

Published: July 11, 2016
doi:

Summary

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.

Abstract

Hay un número de patógenos bacterianos raras y, por lo tanto, se ha descrito suficientemente que se presentan para causar infecciones graves, especialmente en pacientes inmunocomprometidos. En la mayoría de los casos, sólo unos pocos datos, publicados en su mayoría como informes de casos, los cuales están disponibles investigar el papel de los agentes patógenos tales como un agente infeccioso. Por lo tanto, con el fin de aclarar el carácter patógeno de tales microorganismos, es necesario llevar a cabo estudios epidemiológicos que incluyen un gran número de estas bacterias. Los métodos utilizados en un estudio de este tipo de vigilancia tienen que cumplir los siguientes criterios: la identificación de las cepas ha de ser precisa, según la nomenclatura válida, deben ser fáciles de manejar (robustez), económico en el diagnóstico de rutina y tienen que generar comparables resultados entre diferentes laboratorios. En general, hay tres estrategias para la identificación de cepas bacterianas en condiciones de rutina: 1) la identificación fenotípica caracterizar la Biochemical y metabólicas propiedades de las bacterias, 2) técnicas moleculares, tales como la secuenciación de genes 16S rRNA y 3) la espectrometría de masas como un enfoque basado en la novela proteoma. Desde espectrometría de masas y enfoques moleculares son las herramientas más prometedoras para la identificación de una gran variedad de especies bacterianas, se describen estos dos métodos. Se discuten los avances, limitaciones y problemas potenciales cuando se utilizan estas técnicas.

Introduction

Identificación segura de patógenos raras en el diagnóstico de rutina se ve obstaculizada por el hecho de que los métodos de cultivo y bioquímicos clásicos son engorrosos y, a veces cuestionable. Además, un laboratorio de microbiología de diagnóstico tiene que procesar un gran número de patógenos, que van desde unos pocos cientos a varios miles, a diario, lo que requiere el uso de sistemas automatizados. Además de la gestión de un diario de alto rendimiento, se necesita la identificación precisa de especies bacterianas. Esto se justifica ya que difieren en su patrón de susceptibilidad antimicrobiana y, por tanto, la identificación correcta proporciona al médico información esencial para elegir los antibióticos apropiados (por ejemplo, Enterococcus spp., Acinetobacter spp.) 12,43.

Sistemas automatizados de identificación microbiana (AMIS) se aplican conjuntos estandarizados de reacciones enzimáticas para caracterizar las propiedades metabólicas de las bacterias aisladas <sup> 13,15,16,26,27. Aunque los cartuchos utilizados en estos sistemas utilizan un gran número de diferentes reacciones bioquímicas, por ejemplo, 47 en la tarjeta de GN de las AMI utilizado en este estudio 52, esta estrategia permite la identificación segura sólo para un conjunto limitado de bacterias. Por otra parte, la base de datos, un sistema experto avanzado, se centra claramente en la detección de bacterias competentes y altamente relevantes de importancia médica 13,15,16,36. Dos sistemas adicionales, se utiliza ampliamente en los laboratorios, se aplican también este enfoque bioquímico para la identificación de bacterias. Estudios recientes demuestran una exactitud de identificación comparables entre los Amis utilizados en este estudio y uno de los competidores (93,7% y 93,0% respectivamente), mientras que la Amis tiene una precisión identificación de solamente el 82,4% de las especies de nivel 35. Estas discrepancias pueden ser explicadas por la calidad de las referencias de datos de identificación subyacentes, las versiones de los kits y software, las diferencias de metabolismo y la competencia del personal técnico 35,36.

Se utilizan principalmente dos sistemas automatizados MALDI-TOF MS (sistema de identificación microbiana MALDI-TOF, MMI). Estos sistemas permiten la detección de un gran número de especies bacterianas en función de su proteína de espectros de masas de huellas dactilares. Por ejemplo, la base de datos de los MMIS utilizados contiene 6.000 espectros de referencia. Sistemas de identificación basados ​​en espectrometría de masas ofrecen una detección rápida y fiable de una gran variedad de microorganismos patógenos incluyendo raras 11,48,51. Hasta la fecha sólo unas pocas comparaciones directas están disponibles entre las MMIS utilizados en este estudio y su competidor 19,33. De acuerdo con DÆK et al. Ambos sistemas proporcionan una alta tasa similar de exactitud de identificación, pero los MMIS utilizados en este estudio parece ser más fiable en la identificación de especies 19.

genes distintos Del mismo modo, las técnicas moleculares direccionamiento bien conservadas, sino también ( <em> Por ejemplo, 16S rDNA o rpoB) permiten una clara identificación de las especies 3,22,61. Entre estos, el 16S rDNA es la limpieza de genes más ampliamente utilizado debido a su presencia en todas las bacterias 34. Su función se mantiene sin cambios y, por último, con aproximadamente 1.500 pb, que es el tiempo suficiente para ser adecuado para la bioinformática 14,34. Muchos investigadores consideran que el análisis del gen 16S rRNA como el "estándar de oro" para la identificación de bacterias 21. Esto es debido al hecho de que algunos laboratorios utilizan técnicas de hibridación ADN-ADN hasta la fecha para la identificación de bacterias raras o nuevas 14,34. Además, más y más bases de datos están disponibles, que puede ser utilizado para el análisis de genes 16S rRNA 50. Sin embargo, ha de tenerse en cuenta que los sistemas de detección basados ​​16S rDNA tienen una sensibilidad limitada en comparación con protocolos de PCR estándar. Además, el enfoque molecular es sofisticado, consume tiempo y requiere personal altamente capacitado, así comoinstalaciones de los laboratorios dedicados y es, por lo tanto, no se implementan fácilmente en el diagnóstico de rutina 55. Además, se ha demostrado que la combinación de al menos dos métodos diferentes de identificación bacteriana conduce a la identificación de cepas de alta precisión. La combinación de secuenciación de MALDI-TOF MS y 16S rDNA permite la identificación de un gran número de diferentes especies bacterianas con alta precisión. Recientemente se presentó la combinación de análisis de genes MALDI-TOF MS y 16S ARNr de identificación bacteriana estudiar las cuestiones epidemiológicas y patógenos raros 56.

Protocol

1. Extracción de ADN bacteriano Preparación de la solución PBS Pesar 1,65 g de Na 2 HPO 4 x 2 H 2 O, 0,22 g de NaH 2 PO 4 x 2 H 2 O y 8,80 g de NaCl en un matraz y llenar con agua destilada hasta un volumen final de 1.000 ml. Ajustar el pH a 7,4. Para uso final filtrar la solución a través de una prueba de bacterias (0,22 m) de filtro. Las bacterias Extracción de ADN de bacterias Gram-negativas Streak…

Representative Results

MALDI-TOF MS es una novela, método rápido y barato para el diagnóstico de rutina microbiológicos. La identificación de especies bacterianas mediante MALDI-TOF MS produce espectros compuesto principalmente de proteínas ribosomales, sino también otras proteínas muy conservadas "con funciones de mantenimiento de la casa afectadas en grado mínimo y por las condiciones ambientales" .El 17 de la base de datos de este MMIS contiene un amplio conjunto de espectros d…

Discussion

Tanto MALDI-TOF MS y la secuenciación de genes 16S rRNA ofrecen la posibilidad de identificar un gran número de diferentes bacterias. MALDI-TOF MS es un método rápido y barato, que es fácil de manejar y de grandes bases de datos de espectros de masa bacteriana están disponibles. Por esta razón, MALDI-TOF MS es un método eficaz y fiable rápida, el costo de llevar a cabo estudios de cribado se centraron en patógenos bacterianos raras 17,20,39,51. En un estudio prospectivo comparando MALDI-TOF MS con o…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Enno Jacobs for his continuing support.

Materials

CHROMASOLV, HPLC grade water, 1 L Sigma-Aldrich Chemie, München, Germany 270733
Tissue Lyser LT Qiagen, Hilden, Germany 85600 Oscillating Homogenizer
Glass-beads 1,0mm VWR International, Darmstadt, Germany 412-2917
Thermomixer 5436 Eppendorf, Hamburg, Germany 2050-100-05
QIAamp DNA Mini Kit (250) Qiagen, Hilden, Germany 51306
Taq PCR Core Kit (1000 U) Qiagen, Hilden, Germany 201225
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) biomers.net GmbH, Ulm, Germany 
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) biomers.net GmbH, Ulm, Germany 
Mastercycler  Eppendorf, Hamburg, Germany Thermocylcer
Reaction tube 1.5 mL SARSTEDT, Nümbrecht, Germany 72,692
Reaction tube 2 mL SARSTEDT, Nümbrecht, Germany 72,693,005
PCR 8er-CapStrips Biozym Scientific, Hessisch Oldendorf, Germany 711040X
PCR 8er-SoftStrips Biozym Scientific, Hessisch Oldendorf, Germany 711030X
Sharp R-ZV11  Sharp Electronics, Hamburg, Germany Microwave
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) Merck, Darmstadt, Germany 1084211000
SeaKem LE Agarose Biozym Scientific, Hessisch Oldendorf, Germany 849006
(2 x 500 g)
SmartLadder SF – 100 to 1000 bp Eurogentec, Lüttich, Belgium MW-1800-04
Bromphenol blue (25 g) Sigma-Aldrich Chemie, München, Germany B0126
Xylene cyanol FF (10 g) Sigma-Aldrich Chemie, München, Germany X4126
ComPhor L Maxi  Biozym, Hessisch Oldendorf, Germany
Ethidium bromide solution 1 %(10 mL) Carl Roth, Karlsruhe, Germany 2218.1
Gel Doc 2000 Bio-Rad Laboratories, München, Germany Gel-documentation system 
ExoSAP-IT (500 reactions) Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom 78201
Buffer (10 x) with EDTA  Life Technologies, Darmstadt, Germany 402824
BigDye Terminator Kit v1.1 Life Technologies, Darmstadt, Germany 4337450
Hi-Di formamide (25 mL) Life Technologies, Darmstadt, Germany 4311320
DyeEx 2.0 Spin Kit (250) Qiagen, Hilden, Germany 63206
3130 Genetic Analyzer Life Technologies, Darmstadt, Germany Sequenzer
MicroAmp optical 96-well reaction plate with barcode Life Technologies, Darmstadt, Germany 4306737
3130 Genetic Analyzer, plate base 96-well Life Technologies, Darmstadt, Germany 4317237
3130 Genetic Analyzer, plate retainer 96-well Life Technologies, Darmstadt, Germany 4317241
3130 Genetic Analyzer, well plate septa Life Technologies, Darmstadt, Germany 4315933
3130 Genetic Analyzer, POP-7 Polymer, 7 mL Life Technologies, Darmstadt, Germany 4352759
3130 Genetic Analyzer, 4-Capillary Array, 50 cm Life Technologies, Darmstadt, Germany 4333466
Sequencing Analysis Software 5.4 Life Technologies, Darmstadt, Germany
microflex (the MALDI TOF MS maschine) Bruker Daltonik, Bremen, Germany
MALDI Biotyper (the MALDI TOF MS system) Bruker Daltonik, Bremen, Germany our mMIS
VITEK MS  bioMérieux, Nürtingen, Germany  2nd mMis 
flexControl 3.4 (control software) Bruker Daltonik, Bremen, Germany
Biotyper Realtime Classification 3.1 (RTC), (analysis software) Bruker Daltonik, Bremen, Germany
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g Bruker Daltonik, Bremen, Germany 201344
Peptide Calibration Standard II Bruker Daltonik, Bremen, Germany 222570
MSP 96 target polished steel Bruker Daltonik, Bremen, Germany 8224989
peqgreen  peqlab  37-5010
MALDI Biotyper Galaxy  Bruker Daltonik, Bremen, Germany Part No. 1836007 
Vitek 2  bioMérieux, Nürtingen, Germany  our aMis 
MicroScan  Beckman Coulter  2nd aMis 
BD Phoenix™ Automated Microbiology System BD 3rd aMis 
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) ATCC  postive control for PCR 

References

  1. . . Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , (2010).
  2. . Ch. 5. Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , 81-104 (2010).
  3. Adekambi, T., Drancourt, M., Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17 (1), 37-45 (2009).
  4. Almuzara, M. N., et al. First case of fulminant sepsis due to Wohlfahrtiimonas chitiniclastica. J.Clin.Microbiol. 49 (6), 2333-2335 (2011).
  5. Areekul, S., Vongsthongsri, U., Mookto, T., Chettanadee, S., Wilairatana, P. Sphingobacterium multivorum septicemia: a case report. J.Med.Assoc.Thai. 79 (6), 395-398 (1996).
  6. Aydin, T. T., et al. Chryseobacterium indologenes Septicemia in an Infant. Case Rep.Infect.Dis. 2014, 270521 (2014).
  7. Baillie, S., Ireland, K., Warwick, S., Wareham, D., Wilks, M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br.J.Biomed.Sci. 70 (4), 144-148 (2013).
  8. Benedetti, P., Rassu, M., Pavan, G., Sefton, A., Pellizzer, G. Septic shock, pneumonia, and soft tissue infection due to Myroides odoratimimus: report of a case and review of Myroides infections. Infection. 39 (2), 161-165 (2011).
  9. Bertelli, C., Greub, G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin.Microbiol.Infect. 19 (9), 803-813 (2013).
  10. Bhuyar, G., Jain, S., Shah, H., Mehta, V. K. Urinary tract infection by Chryseobacterium indologenes. Indian J.Med.Microbiol. 30 (3), 370-372 (2012).
  11. Buchan, B. W., Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin.Microbiol.Rev. 27 (4), 783-822 (2014).
  12. Castillo-Rojas, G., et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS ONE. 8 (4), e59491 (2013).
  13. Chatzigeorgiou, K. S., Sergentanis, T. N., Tsiodras, S., Hamodrakas, S. J., Bagos, P. G. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J.Clin.Microbiol. 49 (9), 3284-3291 (2011).
  14. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin.Microbiol.Rev. 17 (4), 840-862 (2004).
  15. Crowley, E., et al. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J.AOAC Int. 95 (3), 778-785 (2012).
  16. Crowley, E., et al. Evaluation of the VITEK 2 gram positive (GP) microbial identification test card: collaborative study. J.AOAC Int. 95 (5), 1425-1432 (2012).
  17. Croxatto, A., Prod’hom, G., Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol.Rev. 36 (2), 380-407 (2012).
  18. Crum-Cianflone, N. F., Matson, R. W., Ballon-Landa, G. Fatal case of necrotizing fasciitis due to Myroides odoratus. Infection. 42 (5), 931-935 (2014).
  19. Deak, E., et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn.Microbiol.Infect.Dis. 81 (1), 27-33 (2015).
  20. DeMarco, M. L., Ford, B. A. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clin.Lab.Med. 33 (3), 611-628 (2013).
  21. Deng, J., et al. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J.Thorac.Dis. 6 (5), 539-544 (2014).
  22. Drancourt, M., Berger, P., Raoult, D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J.Clin.Microbiol. 42 (5), 2197-2202 (2004).
  23. Fenselau, C., Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom.Rev. 20 (4), 157-171 (2001).
  24. Freney, J., et al. Septicemia caused by Sphingobacterium multivorum. J.Clin.Microbiol. 25 (6), 1126-1128 (1987).
  25. Funke, G., Frodl, R., Sommer, H. First comprehensively documented case of Paracoccus yeei infection in a human. J.Clin.Microbiol. 42 (7), 3366-3368 (2004).
  26. Funke, G., Funke-Kissling, P. Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. J.Clin.Microbiol. 42 (9), 4067-4071 (2004).
  27. Funke, G., Funke-Kissling, P. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J.Clin.Microbiol. 43 (1), 84-88 (2005).
  28. Gaillot, O., et al. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J.Clin.Microbiol. 49 (12), 4412 (2011).
  29. Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A., Hewlett, E. L. Whole-genome sequencing in outbreak analysis. Clin.Microbiol.Rev. 28 (3), 541-563 (2015).
  30. Holland, R. D., et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun.Mass Spectrom. 10 (10), 1227-1232 (1996).
  31. Holmes, B., Owen, R. J., Hollis, D. G. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int.J.Syst.Bacteriol. 32 (2), 157-165 (1982).
  32. Holmes, B., Owen, R. J., Weaver, R. E. Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int.J.Syst.Bacteriol. 31 (1), 21-34 (1981).
  33. Jamal, W., Albert, M., Rotimi, V. O. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 14 (1), 289 (2014).
  34. Janda, J. M., Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J.Clin.Microbiol. 45 (9), 2761-2764 (2007).
  35. Jin, W. Y., et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn.Microbiol.Infect.Dis. 70 (4), 442-447 (2011).
  36. Jossart, M. F., Courcol, R. J. Evaluation of an automated system for identification of Enterobacteriaceae and nonfermenting bacilli. Eur.J.Clin.Microbiol.Infect.Dis. 18 (12), 902-907 (1999).
  37. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal.Chem. 60 (20), 2299-2301 (1988).
  38. Koh, Y. R., et al. The first Korean case of Sphingobacterium spiritivorum bacteremia in a patient with acute myeloid leukemia. Ann.Lab.Med. 33 (4), 283-287 (2013).
  39. Kok, J., Chen, S. C., Dwyer, D. E., Iredell, J. R. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology. 45 (1), 4-17 (2013).
  40. Koljalg, S., et al. First report of Wohlfahrtiimonas chitiniclastica from soft tissue and bone infection at an unusually high northern latitude. Folia Microbiol.(Praha). , (2014).
  41. Krishnamurthy, T., Ross, P. L. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun.Mass Spectrom. 10 (15), 1992-1996 (1996).
  42. Ktari, S., et al. Nosocomial outbreak of Myroides odoratimimus urinary tract infection in a Tunisian hospital. J.Hosp.Infect. 80 (1), 77-81 (2012).
  43. Lim, Y. M., Shin, K. S., Kim, J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J.Clin.Microbiol. 45 (3), 902-905 (2007).
  44. Marinella, M. A. Cellulitis and sepsis due to sphingobacterium. JAMA. 288 (16), 1985 (2002).
  45. McElvania, T. E., Shuey, S., Winkler, D. W., Butler, M. A., Burnham, C. A. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin.Microbiol. 51 (5), 1421-1427 (2013).
  46. Mellmann, A., et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J.Clin.Microbiol. 46 (6), 1946-1954 (2008).
  47. Mignard, S., Flandrois, J. P. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J.Microbiol.Methods. 67 (3), 574-581 (2006).
  48. Nomura, F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochim.Biophys.Acta. , (2014).
  49. Opota, O., Croxatto, A., Prod’hom, G., Greub, G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin.Microbiol.Infect. 21 (4), 313-322 (2015).
  50. Patel, J. B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol.Diagn. 6 (4), 313-321 (2001).
  51. Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin.Chem. , (2014).
  52. Pincus, D. H., Miller, M. J. Ch. 1. Encyclopedia of Rapid Microbiological Methods. , 1-32 (2005).
  53. Potvliege, C., et al. Flavobacterium multivorum septicemia in a hemodialyzed patient. J.Clin.Microbiol. 19 (4), 568-569 (1984).
  54. Rebaudet, S., Genot, S., Renvoise, A., Fournier, P. E., Stein, A. Wohlfahrtiimonas chitiniclastica bacteremia in homeless woman. Emerg.Infect.Dis. 15 (6), 985-987 (2009).
  55. Risch, M., et al. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med.Wkly. 140, 13095 (2010).
  56. Schröttner, P., Rudolph, W. W., Eing, B. R., Bertram, S., Gunzer, F. Comparison of VITEK2, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus. Diagn.Microbiol.Infect.Dis. 79 (2), 155-159 (2014).
  57. Schröttner, P., Rudolph, W. W., Taube, F., Gunzer, F. First report on the isolation of Aureimonas altamirensis from a patient with peritonitis. Int.J.Infect.Dis. 29, 71-73 (2014).
  58. Schröttner, P., et al. Actinobacillus equuli ssp. haemolyticus in a semi-occlusively treated horse bite wound in a 2-year-old girl. Ger.Med.Sci. 11, (2013).
  59. Seng, P., et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin.Infect.Dis. 49 (4), 543-551 (2009).
  60. Shahul, H. A., Manu, M. K., Mohapatra, A. K., Chawla, K. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case.Rep. 2014, (2014).
  61. Stackebrandt, E., Göbel, B. M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int.J.Syst.Bacteriol. 44, 846-849 (1994).
  62. Tan, K. E., et al. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J.Clin.Microbiol. 50 (10), 3301-3308 (2012).
  63. Tanaka, K. The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew.Chem.Int.Ed.Engl. 42 (33), 3860-3870 (2003).
  64. Thaiwong, T., Kettler, N. M., Lim, A., Dirkse, H., Kiupel, M. First report of emerging zoonotic pathogen Wohlfahrtiimonas chitiniclastica in the United States. J.Clin.Microbiol. 52 (6), 2245-2247 (2014).
  65. Török, M. E., Peacock, S. J. Rapid whole-genome sequencing of bacterial pathogens in the clinical microbiology laboratory–pipe dream or reality. J.Antimicrob.Chemother. 67 (10), 2307-2308 (2012).
  66. Toth, E. M., et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int.J.Syst.Evol.Microbiol. 58, 976-981 (2008).
  67. Tristezza, M., Gerardi, C., Logrieco, A., Grieco, F. An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. J.Microbiol.Methods. 78 (3), 286-291 (2009).
  68. Valentine, N. B., Wahl, J. H., Kingsley, M. T., Wahl, K. L. Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun.Mass Spectrom. 16 (14), 1352-1357 (2002).
  69. van Veen, S. Q., Claas, E. C., Kuijper, E. J. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J.Clin.Microbiol. 48 (3), 900-907 (2010).
  70. Verma, R. K., Rawat, R., Singh, A., Singh, D. P., Verma, V. Sphingobacterium multivorum causing fatal meningoencephalitis: a rare case report. Int.J.Res.Med.Sci. 2 (4), 1710-1712 (2014).
  71. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W., Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int.J.Syst.Bacteriol. 33 (3), 580-598 (1983).

Play Video

Cite This Article
Schröttner, P., Gunzer, F., Schüppel, J., Rudolph, W. W. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J. Vis. Exp. (113), e53176, doi:10.3791/53176 (2016).

View Video