Summary

Identificazione di batteri patogeni rari da 16S rRNA sequenziamento del gene e MALDI-TOF MS

Published: July 11, 2016
doi:

Summary

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.

Abstract

Ci sono un certo numero di batteri patogeni rare e, quindi, non sufficientemente descritto che sono riportati per causare infezioni gravi specialmente nei pazienti immunocompromessi. Nella maggior parte dei casi solo pochi dati, per lo più pubblicati come case report, sono disponibili che indagare il ruolo di tali agenti patogeni come un agente infettivo. Pertanto, al fine di chiarire il carattere patogeno di tali microrganismi, è necessario condurre studi epidemiologici che comprendono un gran numero di questi batteri. I metodi utilizzati in uno studio tale sorveglianza devono soddisfare i seguenti criteri: l'identificazione dei ceppi deve essere accurata secondo la nomenclatura valida, dovrebbero essere facili da maneggiare (robustezza), economico nella diagnostica di routine e devono generare comparabili risultati tra i diversi laboratori. In generale, ci sono tre strategie per l'identificazione di ceppi batterici in un ambiente di routine: 1) Identificazione fenotipica che caratterizza la BioChemicaL e metaboliche proprietà dei batteri, 2) tecniche di biologia molecolare, come 16S rRNA sequenziamento del gene e 3) spettrometria di massa come un approccio basato romanzo proteoma. Poiché spettrometria di massa e approcci molecolari sono gli strumenti più promettenti per identificare una grande varietà di specie batteriche, sono descritti questi due metodi. I progressi, limitazioni e potenziali problemi quando si utilizzano queste tecniche sono discusse.

Introduction

l'identificazione sicura dei patogeni rari nella diagnostica di routine è ostacolata dal fatto che i metodi culturali e biochimici classici sono ingombranti e talvolta discutibili. Inoltre, un laboratorio di microbiologia diagnostica deve elaborare un gran numero di agenti patogeni, che vanno da poche centinaia a diverse migliaia, giornaliero, che richiede l'uso di sistemi automatizzati. Oltre alla gestione di una elevata produttività giornaliera, è necessaria la precisa identificazione di specie batteriche. Questo è giustificato dal momento che si differenziano per il loro modello di sensibilità agli antibiotici e, pertanto, la corretta identificazione fornisce al clinico informazioni essenziali per scegliere antibiotici appropriati (per esempio, Enterococcus spp., Acinetobacter spp.) 12,43.

sistemi di identificazione microbici automatizzati (AMIS) si applicano insiemi standard di reazioni enzimatiche per caratterizzare le proprietà metaboliche di isolati batterici <sup> 13,15,16,26,27. Sebbene le cartucce utilizzate in questi sistemi utilizzano un gran numero di diverse reazioni biochimiche, ad esempio, 47 nella scheda GN del AMIS utilizzato in questo studio 52, questo permette strategia identificazione sicura solo per un numero limitato di batteri. Inoltre, la banca dati, un sistema esperto avanzata, è chiaramente focalizzata sulla rilevazione di batteri pertinenti e altamente rilevanti di importanza medica 13,15,16,36. Due ulteriori sistemi, ampiamente utilizzati nei laboratori, si applicano anche questo approccio biochimico per l'identificazione batterica. Recenti studi dimostrano una precisione di identificazione comparabili tra Amis utilizzati in questo studio e uno dei concorrenti (93,7% e 93,0%, rispettivamente), mentre il 3 ° AMIS ha una precisione di identificazione del solo 82,4% sulle specie di livello 35. Tali discrepanze possono essere spiegate dalla qualità dei riferimenti ai dati di identificazione sottostanti, le versioni di kit e software, differenze di metaboLISM e la competenza del personale tecnico 35,36.

Due sistemi MALDI-TOF MS automatizzati (sistema di identificazione microbica MALDI-TOF, MMI) sono usati principalmente. Questi sistemi consentono il rilevamento di un gran numero di specie batteriche sulla base della loro proteina spettri di massa di impronte digitali. Ad esempio, il database delle MMIS utilizzati contiene 6.000 spettri di riferimento. Sistemi di identificazione basati sulla spettrometria di massa offrono il rilevamento veloce e affidabile di una grande varietà di microrganismi patogeni tra cui rari 11,48,51. Fino ad oggi solo pochi confronti diretti sono disponibili tra i MMI utilizzati in questo studio e il suo concorrente 19,33. Secondo dæk et al. Entrambi i sistemi forniscono un alto tasso di accuratezza analoga identificazione, ma le MMI utilizzati in questo studio sembra essere più affidabile nell'identificazione delle specie 19.

Allo stesso modo, le tecniche molecolari indirizzamento ben conservato, ma anche geni distinti ( <em> ad esempio, 16S rDNA o rpoB) permettono una chiara identificazione delle specie 3,22,61. Tra questi, il 16S rDNA è il gene housekeeping più utilizzato per la sua presenza in tutti i batteri 34. La sua funzione rimane invariato e, infine, con circa 1500 bp, è abbastanza lungo per essere adatto per bioinformatica 14,34. Molti ricercatori considerano l'analisi del gene 16S rRNA come il "gold standard" per l'identificazione batterica 21. Ciò è dovuto al fatto che alcuni laboratori utilizzano tecniche di ibridazione DNA-DNA alla data di identificazione di rare o nuovi batteri 14,34. Inoltre, sempre più banche dati sono disponibili che possono essere utilizzati per 16S rRNA analisi del gene 50. Tuttavia, si deve tenere conto che i sistemi di rilevamento basati 16S rDNA hanno una sensibilità limitata rispetto ai protocolli PCR standard. Inoltre, l'approccio molecolare è sofisticato, tempo e richiede personale altamente qualificato estrutture di laboratorio dedicate e, quindi, non facilmente implementato in diagnostica di routine 55. Inoltre, è stato dimostrato che la combinazione di almeno due diversi metodi di identificazione batterica conduce ad altamente accurata identificazione del ceppo. La combinazione di MALDI-TOF MS e sequenziamento del 16S rDNA consente l'identificazione di un gran numero di differenti specie batteriche con elevata precisione. Recentemente la combinazione di analisi del gene MALDI-TOF MS e 16S rRNA è stata presentata per l'identificazione batterica studiare domande epidemiologici e agenti patogeni rari 56.

Protocol

1. Estrazione del DNA batterico Preparazione della Soluzione PBS Pesare 1,65 g di Na 2 HPO 4 x 2H 2 O, 0,22 g di NaH 2 PO 4 x 2H 2 O e 8,80 g di NaCl in un pallone e riempire con acqua distillata fino ad un volume finale di 1000 ml. Regolare il pH a 7,4. Per l'uso finale filtrare la soluzione attraverso un batterio a prova (0,22 micron) Filtro. I batteri DNA Estrazione di Gram-negativi Streak il materia…

Representative Results

MALDI-TOF MS è un romanzo, metodo veloce ed economico per la diagnostica di routine microbiologici. Batterica identificazione della specie da MALDI-TOF MS produce spettri principalmente composto da proteine ​​ribosomali, ma anche altri "proteine ​​molto conservato con funzioni di house-keeping colpite in misura minima dalle condizioni ambientali" 17 banca dati .La di questa MMIS contiene un grande insieme di spettri di riferimento e anche i batteri, che rara…

Discussion

Entrambi MALDI-TOF MS e 16S rRNA gene sequenziamento offrono la possibilità di individuare un gran numero di batteri diversi. MALDI-TOF MS è un metodo veloce ed economico, che è facile da maneggiare e grandi database di spettri di massa batterica sono disponibili. Per questo motivo, MALDI-TOF MS è un metodo efficace e affidabile rapida costo per condurre studi di screening focalizzati in rare batteri patogeni 17,20,39,51. In uno studio prospettico confrontando MALDI-TOF MS con altri metodi di identificazi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Enno Jacobs for his continuing support.

Materials

CHROMASOLV, HPLC grade water, 1 L Sigma-Aldrich Chemie, München, Germany 270733
Tissue Lyser LT Qiagen, Hilden, Germany 85600 Oscillating Homogenizer
Glass-beads 1,0mm VWR International, Darmstadt, Germany 412-2917
Thermomixer 5436 Eppendorf, Hamburg, Germany 2050-100-05
QIAamp DNA Mini Kit (250) Qiagen, Hilden, Germany 51306
Taq PCR Core Kit (1000 U) Qiagen, Hilden, Germany 201225
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) biomers.net GmbH, Ulm, Germany 
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) biomers.net GmbH, Ulm, Germany 
Mastercycler  Eppendorf, Hamburg, Germany Thermocylcer
Reaction tube 1.5 mL SARSTEDT, Nümbrecht, Germany 72,692
Reaction tube 2 mL SARSTEDT, Nümbrecht, Germany 72,693,005
PCR 8er-CapStrips Biozym Scientific, Hessisch Oldendorf, Germany 711040X
PCR 8er-SoftStrips Biozym Scientific, Hessisch Oldendorf, Germany 711030X
Sharp R-ZV11  Sharp Electronics, Hamburg, Germany Microwave
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) Merck, Darmstadt, Germany 1084211000
SeaKem LE Agarose Biozym Scientific, Hessisch Oldendorf, Germany 849006
(2 x 500 g)
SmartLadder SF – 100 to 1000 bp Eurogentec, Lüttich, Belgium MW-1800-04
Bromphenol blue (25 g) Sigma-Aldrich Chemie, München, Germany B0126
Xylene cyanol FF (10 g) Sigma-Aldrich Chemie, München, Germany X4126
ComPhor L Maxi  Biozym, Hessisch Oldendorf, Germany
Ethidium bromide solution 1 %(10 mL) Carl Roth, Karlsruhe, Germany 2218.1
Gel Doc 2000 Bio-Rad Laboratories, München, Germany Gel-documentation system 
ExoSAP-IT (500 reactions) Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom 78201
Buffer (10 x) with EDTA  Life Technologies, Darmstadt, Germany 402824
BigDye Terminator Kit v1.1 Life Technologies, Darmstadt, Germany 4337450
Hi-Di formamide (25 mL) Life Technologies, Darmstadt, Germany 4311320
DyeEx 2.0 Spin Kit (250) Qiagen, Hilden, Germany 63206
3130 Genetic Analyzer Life Technologies, Darmstadt, Germany Sequenzer
MicroAmp optical 96-well reaction plate with barcode Life Technologies, Darmstadt, Germany 4306737
3130 Genetic Analyzer, plate base 96-well Life Technologies, Darmstadt, Germany 4317237
3130 Genetic Analyzer, plate retainer 96-well Life Technologies, Darmstadt, Germany 4317241
3130 Genetic Analyzer, well plate septa Life Technologies, Darmstadt, Germany 4315933
3130 Genetic Analyzer, POP-7 Polymer, 7 mL Life Technologies, Darmstadt, Germany 4352759
3130 Genetic Analyzer, 4-Capillary Array, 50 cm Life Technologies, Darmstadt, Germany 4333466
Sequencing Analysis Software 5.4 Life Technologies, Darmstadt, Germany
microflex (the MALDI TOF MS maschine) Bruker Daltonik, Bremen, Germany
MALDI Biotyper (the MALDI TOF MS system) Bruker Daltonik, Bremen, Germany our mMIS
VITEK MS  bioMérieux, Nürtingen, Germany  2nd mMis 
flexControl 3.4 (control software) Bruker Daltonik, Bremen, Germany
Biotyper Realtime Classification 3.1 (RTC), (analysis software) Bruker Daltonik, Bremen, Germany
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g Bruker Daltonik, Bremen, Germany 201344
Peptide Calibration Standard II Bruker Daltonik, Bremen, Germany 222570
MSP 96 target polished steel Bruker Daltonik, Bremen, Germany 8224989
peqgreen  peqlab  37-5010
MALDI Biotyper Galaxy  Bruker Daltonik, Bremen, Germany Part No. 1836007 
Vitek 2  bioMérieux, Nürtingen, Germany  our aMis 
MicroScan  Beckman Coulter  2nd aMis 
BD Phoenix™ Automated Microbiology System BD 3rd aMis 
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) ATCC  postive control for PCR 

References

  1. . . Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , (2010).
  2. . Ch. 5. Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , 81-104 (2010).
  3. Adekambi, T., Drancourt, M., Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17 (1), 37-45 (2009).
  4. Almuzara, M. N., et al. First case of fulminant sepsis due to Wohlfahrtiimonas chitiniclastica. J.Clin.Microbiol. 49 (6), 2333-2335 (2011).
  5. Areekul, S., Vongsthongsri, U., Mookto, T., Chettanadee, S., Wilairatana, P. Sphingobacterium multivorum septicemia: a case report. J.Med.Assoc.Thai. 79 (6), 395-398 (1996).
  6. Aydin, T. T., et al. Chryseobacterium indologenes Septicemia in an Infant. Case Rep.Infect.Dis. 2014, 270521 (2014).
  7. Baillie, S., Ireland, K., Warwick, S., Wareham, D., Wilks, M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br.J.Biomed.Sci. 70 (4), 144-148 (2013).
  8. Benedetti, P., Rassu, M., Pavan, G., Sefton, A., Pellizzer, G. Septic shock, pneumonia, and soft tissue infection due to Myroides odoratimimus: report of a case and review of Myroides infections. Infection. 39 (2), 161-165 (2011).
  9. Bertelli, C., Greub, G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin.Microbiol.Infect. 19 (9), 803-813 (2013).
  10. Bhuyar, G., Jain, S., Shah, H., Mehta, V. K. Urinary tract infection by Chryseobacterium indologenes. Indian J.Med.Microbiol. 30 (3), 370-372 (2012).
  11. Buchan, B. W., Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin.Microbiol.Rev. 27 (4), 783-822 (2014).
  12. Castillo-Rojas, G., et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS ONE. 8 (4), e59491 (2013).
  13. Chatzigeorgiou, K. S., Sergentanis, T. N., Tsiodras, S., Hamodrakas, S. J., Bagos, P. G. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J.Clin.Microbiol. 49 (9), 3284-3291 (2011).
  14. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin.Microbiol.Rev. 17 (4), 840-862 (2004).
  15. Crowley, E., et al. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J.AOAC Int. 95 (3), 778-785 (2012).
  16. Crowley, E., et al. Evaluation of the VITEK 2 gram positive (GP) microbial identification test card: collaborative study. J.AOAC Int. 95 (5), 1425-1432 (2012).
  17. Croxatto, A., Prod’hom, G., Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol.Rev. 36 (2), 380-407 (2012).
  18. Crum-Cianflone, N. F., Matson, R. W., Ballon-Landa, G. Fatal case of necrotizing fasciitis due to Myroides odoratus. Infection. 42 (5), 931-935 (2014).
  19. Deak, E., et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn.Microbiol.Infect.Dis. 81 (1), 27-33 (2015).
  20. DeMarco, M. L., Ford, B. A. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clin.Lab.Med. 33 (3), 611-628 (2013).
  21. Deng, J., et al. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J.Thorac.Dis. 6 (5), 539-544 (2014).
  22. Drancourt, M., Berger, P., Raoult, D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J.Clin.Microbiol. 42 (5), 2197-2202 (2004).
  23. Fenselau, C., Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom.Rev. 20 (4), 157-171 (2001).
  24. Freney, J., et al. Septicemia caused by Sphingobacterium multivorum. J.Clin.Microbiol. 25 (6), 1126-1128 (1987).
  25. Funke, G., Frodl, R., Sommer, H. First comprehensively documented case of Paracoccus yeei infection in a human. J.Clin.Microbiol. 42 (7), 3366-3368 (2004).
  26. Funke, G., Funke-Kissling, P. Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. J.Clin.Microbiol. 42 (9), 4067-4071 (2004).
  27. Funke, G., Funke-Kissling, P. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J.Clin.Microbiol. 43 (1), 84-88 (2005).
  28. Gaillot, O., et al. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J.Clin.Microbiol. 49 (12), 4412 (2011).
  29. Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A., Hewlett, E. L. Whole-genome sequencing in outbreak analysis. Clin.Microbiol.Rev. 28 (3), 541-563 (2015).
  30. Holland, R. D., et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun.Mass Spectrom. 10 (10), 1227-1232 (1996).
  31. Holmes, B., Owen, R. J., Hollis, D. G. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int.J.Syst.Bacteriol. 32 (2), 157-165 (1982).
  32. Holmes, B., Owen, R. J., Weaver, R. E. Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int.J.Syst.Bacteriol. 31 (1), 21-34 (1981).
  33. Jamal, W., Albert, M., Rotimi, V. O. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 14 (1), 289 (2014).
  34. Janda, J. M., Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J.Clin.Microbiol. 45 (9), 2761-2764 (2007).
  35. Jin, W. Y., et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn.Microbiol.Infect.Dis. 70 (4), 442-447 (2011).
  36. Jossart, M. F., Courcol, R. J. Evaluation of an automated system for identification of Enterobacteriaceae and nonfermenting bacilli. Eur.J.Clin.Microbiol.Infect.Dis. 18 (12), 902-907 (1999).
  37. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal.Chem. 60 (20), 2299-2301 (1988).
  38. Koh, Y. R., et al. The first Korean case of Sphingobacterium spiritivorum bacteremia in a patient with acute myeloid leukemia. Ann.Lab.Med. 33 (4), 283-287 (2013).
  39. Kok, J., Chen, S. C., Dwyer, D. E., Iredell, J. R. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology. 45 (1), 4-17 (2013).
  40. Koljalg, S., et al. First report of Wohlfahrtiimonas chitiniclastica from soft tissue and bone infection at an unusually high northern latitude. Folia Microbiol.(Praha). , (2014).
  41. Krishnamurthy, T., Ross, P. L. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun.Mass Spectrom. 10 (15), 1992-1996 (1996).
  42. Ktari, S., et al. Nosocomial outbreak of Myroides odoratimimus urinary tract infection in a Tunisian hospital. J.Hosp.Infect. 80 (1), 77-81 (2012).
  43. Lim, Y. M., Shin, K. S., Kim, J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J.Clin.Microbiol. 45 (3), 902-905 (2007).
  44. Marinella, M. A. Cellulitis and sepsis due to sphingobacterium. JAMA. 288 (16), 1985 (2002).
  45. McElvania, T. E., Shuey, S., Winkler, D. W., Butler, M. A., Burnham, C. A. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin.Microbiol. 51 (5), 1421-1427 (2013).
  46. Mellmann, A., et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J.Clin.Microbiol. 46 (6), 1946-1954 (2008).
  47. Mignard, S., Flandrois, J. P. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J.Microbiol.Methods. 67 (3), 574-581 (2006).
  48. Nomura, F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochim.Biophys.Acta. , (2014).
  49. Opota, O., Croxatto, A., Prod’hom, G., Greub, G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin.Microbiol.Infect. 21 (4), 313-322 (2015).
  50. Patel, J. B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol.Diagn. 6 (4), 313-321 (2001).
  51. Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin.Chem. , (2014).
  52. Pincus, D. H., Miller, M. J. Ch. 1. Encyclopedia of Rapid Microbiological Methods. , 1-32 (2005).
  53. Potvliege, C., et al. Flavobacterium multivorum septicemia in a hemodialyzed patient. J.Clin.Microbiol. 19 (4), 568-569 (1984).
  54. Rebaudet, S., Genot, S., Renvoise, A., Fournier, P. E., Stein, A. Wohlfahrtiimonas chitiniclastica bacteremia in homeless woman. Emerg.Infect.Dis. 15 (6), 985-987 (2009).
  55. Risch, M., et al. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med.Wkly. 140, 13095 (2010).
  56. Schröttner, P., Rudolph, W. W., Eing, B. R., Bertram, S., Gunzer, F. Comparison of VITEK2, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus. Diagn.Microbiol.Infect.Dis. 79 (2), 155-159 (2014).
  57. Schröttner, P., Rudolph, W. W., Taube, F., Gunzer, F. First report on the isolation of Aureimonas altamirensis from a patient with peritonitis. Int.J.Infect.Dis. 29, 71-73 (2014).
  58. Schröttner, P., et al. Actinobacillus equuli ssp. haemolyticus in a semi-occlusively treated horse bite wound in a 2-year-old girl. Ger.Med.Sci. 11, (2013).
  59. Seng, P., et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin.Infect.Dis. 49 (4), 543-551 (2009).
  60. Shahul, H. A., Manu, M. K., Mohapatra, A. K., Chawla, K. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case.Rep. 2014, (2014).
  61. Stackebrandt, E., Göbel, B. M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int.J.Syst.Bacteriol. 44, 846-849 (1994).
  62. Tan, K. E., et al. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J.Clin.Microbiol. 50 (10), 3301-3308 (2012).
  63. Tanaka, K. The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew.Chem.Int.Ed.Engl. 42 (33), 3860-3870 (2003).
  64. Thaiwong, T., Kettler, N. M., Lim, A., Dirkse, H., Kiupel, M. First report of emerging zoonotic pathogen Wohlfahrtiimonas chitiniclastica in the United States. J.Clin.Microbiol. 52 (6), 2245-2247 (2014).
  65. Török, M. E., Peacock, S. J. Rapid whole-genome sequencing of bacterial pathogens in the clinical microbiology laboratory–pipe dream or reality. J.Antimicrob.Chemother. 67 (10), 2307-2308 (2012).
  66. Toth, E. M., et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int.J.Syst.Evol.Microbiol. 58, 976-981 (2008).
  67. Tristezza, M., Gerardi, C., Logrieco, A., Grieco, F. An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. J.Microbiol.Methods. 78 (3), 286-291 (2009).
  68. Valentine, N. B., Wahl, J. H., Kingsley, M. T., Wahl, K. L. Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun.Mass Spectrom. 16 (14), 1352-1357 (2002).
  69. van Veen, S. Q., Claas, E. C., Kuijper, E. J. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J.Clin.Microbiol. 48 (3), 900-907 (2010).
  70. Verma, R. K., Rawat, R., Singh, A., Singh, D. P., Verma, V. Sphingobacterium multivorum causing fatal meningoencephalitis: a rare case report. Int.J.Res.Med.Sci. 2 (4), 1710-1712 (2014).
  71. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W., Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int.J.Syst.Bacteriol. 33 (3), 580-598 (1983).

Play Video

Cite This Article
Schröttner, P., Gunzer, F., Schüppel, J., Rudolph, W. W. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J. Vis. Exp. (113), e53176, doi:10.3791/53176 (2016).

View Video