Summary

Identificação de patógenos bacterianos raras, seqüência do gene 16rRNA e MALDI-TOF MS

Published: July 11, 2016
doi:

Summary

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.

Abstract

Há um certo número de agentes patogénicos bacterianos raras e, por conseguinte, suficientemente descritas, que são relatados para causar infecções graves, especialmente em pacientes imunocomprometidos. Na maioria dos casos, apenas alguns dados, em sua maioria publicados como relatos de casos, estão disponíveis que investigar o papel desses agentes patogênicos que um agente infeccioso. Por conseguinte, a fim de clarificar o carácter patogénico dos referidos microorganismos, é necessário levar a cabo estudos epidemiológicos os quais incluem um grande número dessas bactérias. Os métodos utilizados em tal estudo de vigilância tem que seguir os seguintes critérios: a identificação das estirpes tem que ser precisos de acordo com a nomenclatura válida, devem ser fácil de manusear (robustez), econômico em diagnósticos de rotina e eles têm para gerar comparáveis resultados entre diferentes laboratórios. De um modo geral, existem três estratégias para a identificação de estirpes bacterianas num local de rotina: 1) identificação fenotípica caracterizar o Biochemical e metabólicas propriedades das bactérias, 2) técnicas moleculares como a sequenciação do gene 16S rRNA e 3) espectrometria de massa como uma abordagem baseada em romance proteoma. Uma vez que a espectrometria de massa e abordagens moleculares são as ferramentas mais promissores para a identificação de uma grande variedade de espécies bacterianas, são descritos estes dois métodos. Avanços, limitações e potenciais problemas ao utilizar estas técnicas são discutidas.

Introduction

identificação segura de agentes patogénicos raros em diagnósticos de rotina é dificultada pelo fato de que os métodos culturais e bioquímicos clássicos são complicados e, por vezes questionável. Além disso, um laboratório de diagnóstico microbiologia tem de processar um grande número de agentes patogénicos, que vão desde algumas centenas a vários milhares, diariamente, o que requer o uso de sistemas automatizados. Em adição à gestão de um alto rendimento diária, é necessária a identificação precisa de espécies bacterianas. Isso se justifica, uma vez que diferem em seu padrão de susceptibilidade antimicrobiana e identificação, portanto, correta fornece o clínico com informações essenciais para escolher antibióticos apropriados (por exemplo, Enterococcus spp., Acinetobacter spp.) 12,43.

sistemas de identificação microbiana automatizados (AMIS) aplicar conjuntos padronizados de reações enzimáticas para caracterizar as propriedades metabólicas de isolados bacterianos <sup> 13,15,16,26,27. Embora os cartuchos utilizados nestes sistemas utilizam um grande número de diferentes reacções bioquímicas, por exemplo, 47 na placa de GN da amis utilizado neste estudo 52, esta estratégia permite a identificação segura apenas para um conjunto limitado de bactérias. Além disso, o banco de dados, um sistema especialista avançado, está claramente centrado na detecção de bactérias relevantes e altamente relevantes de importância médica 13,15,16,36. Dois outros sistemas, amplamente utilizado em laboratórios, também se aplicam esta abordagem bioquímica para a identificação de bactérias. Estudos recentes demonstram uma precisão de identificação comparáveis ​​entre os Amis utilizados neste estudo e um dos concorrentes (93,7% e 93,0%, respectivamente), enquanto que o Amis tem uma precisão de apenas 82,4% de identificação em nível de espécie 35. Tais discrepâncias podem ser explicadas pela qualidade das referências de dados de identificação subjacentes, as versões de kits e software, diferenças em metabolismo e competência do pessoal técnico 35,36.

Dois sistemas de MALDI-TOF MS automatizado (sistema de identificação microbiana MALDI-TOF, IHMs) são usados ​​principalmente. Estes sistemas permitem a detecção de um grande número de espécies bacterianas com base no seu espectro de massa de proteína de impressões digitais. Por exemplo, a base de dados dos MMIs utilizadas contém 6000 espectros de referência. Sistemas de identificação baseados em espectrometria de massa oferecem detecção rápida e confiável de uma grande variedade de microorganismos, incluindo raros patógenos 11,48,51. Até à data apenas algumas comparações diretas estão disponíveis entre as MMIs utilizados neste estudo e sua concorrente 19,33. De acordo com Daek et al., Ambos os sistemas fornecem uma elevada taxa de precisão semelhante a identificação, mas os MMIs utilizados neste estudo parece ser mais fiável na identificação de espécies 19.

genes distintos Do mesmo modo, técnicas de biologia molecular endereçamento bem conservados mas também ( <em> por exemplo, 16S rDNA ou rpoB) permitir a identificação das espécies clara 3,22,61. Entre estes, o 16S ADNr é o gene de manutenção mais amplamente utilizado devido à sua presença em todas as bactérias 34. Sua função permanece inalterada e, finalmente, com cerca de 1.500 pb, é longo o suficiente para ser adequado para bio-informática 14,34. Muitos pesquisadores consideram análise do gene 16S rRNA como o "padrão-ouro" para a identificação bacteriana 21. Isto é devido ao facto de alguns laboratórios utilizam técnicas de hibridação DNA-DNA até à data para a identificação de bactérias raros ou novos 14,34. Além disso, mais e mais bases de dados estão disponíveis, que podem ser utilizados para análise do gene 16S rRNA 50. No entanto, tem que ser tomado em conta que os sistemas de detecção à base de ADNr 16S tem uma sensibilidade limitada em comparação com protocolos de PCR convencionais. Além disso, a abordagem molecular é sofisticado, consumindo tempo e requer pessoal altamente treinado, bem comodedicados instalações laboratoriais e é, portanto, não é facilmente implementado em diagnósticos de rotina 55. Além disso, tem sido demonstrado que a combinação de, pelo menos, dois métodos diferentes para a identificação de bactérias conduz a identificação da estirpe de elevada precisão. A combinação de MALDI-TOF MS e sequenciação de 16S ADNr permite a identificação de um grande número de diferentes espécies bacterianas com alta precisão. Recentemente, a combinação de análise genética MALDI-TOF MS e 16S rRNA foi apresentada para a identificação de bactérias estudar questões epidemiológicas e agentes patogénicos raros 56.

Protocol

1. Extracção de DNA bacteriano Preparação de solução de PBS Pesar 1,65 g de Na 2 HPO 4 x 2H 2 O, 0,22 g de NaH 2 PO 4 x 2H 2 O e 8,80 g de NaCl, num balão e encher com água destilada para um volume final de 1000 ml. Ajustar o pH para 7,4. Para utilização final filtrar a solução através de uma bactéria-proof (0,22) filtro. Bactérias Extracção de DNA de bactérias Gram-negativas Streak o mate…

Representative Results

MALDI-TOF MS é um método rápido e barato para diagnósticos de rotina microbiológicos romance,. Identificação de espécies bacterianas por MALDI-TOF MS produz espectros composta principalmente de proteínas ribossomais, mas também outras "proteínas muito conservadas com funções casa de manutenção afetados o menos possível e por condições ambientais" 17 banco de dados .A deste MMIs contém um grande conjunto de espectros de referência e até mesmo bact…

Discussion

Ambos MALDI-TOF MS e 16S rRNA sequenciação genética oferecem a possibilidade de identificar um grande número de diferentes bactérias. MALDI-TOF MS é um método rápido e barato, o que é fácil de manusear e de grandes bases de dados de espectros de massa bacteriana estão disponíveis. Por esta razão, MALDI-TOF MS é um custo método rápido, eficaz e de confiança para realizar os estudos de rastreio focados em agentes patogénicos bacterianos raras 17,20,39,51. Em um estudo prospectivo comparando MA…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Enno Jacobs for his continuing support.

Materials

CHROMASOLV, HPLC grade water, 1 L Sigma-Aldrich Chemie, München, Germany 270733
Tissue Lyser LT Qiagen, Hilden, Germany 85600 Oscillating Homogenizer
Glass-beads 1,0mm VWR International, Darmstadt, Germany 412-2917
Thermomixer 5436 Eppendorf, Hamburg, Germany 2050-100-05
QIAamp DNA Mini Kit (250) Qiagen, Hilden, Germany 51306
Taq PCR Core Kit (1000 U) Qiagen, Hilden, Germany 201225
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) biomers.net GmbH, Ulm, Germany 
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) biomers.net GmbH, Ulm, Germany 
Mastercycler  Eppendorf, Hamburg, Germany Thermocylcer
Reaction tube 1.5 mL SARSTEDT, Nümbrecht, Germany 72,692
Reaction tube 2 mL SARSTEDT, Nümbrecht, Germany 72,693,005
PCR 8er-CapStrips Biozym Scientific, Hessisch Oldendorf, Germany 711040X
PCR 8er-SoftStrips Biozym Scientific, Hessisch Oldendorf, Germany 711030X
Sharp R-ZV11  Sharp Electronics, Hamburg, Germany Microwave
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) Merck, Darmstadt, Germany 1084211000
SeaKem LE Agarose Biozym Scientific, Hessisch Oldendorf, Germany 849006
(2 x 500 g)
SmartLadder SF – 100 to 1000 bp Eurogentec, Lüttich, Belgium MW-1800-04
Bromphenol blue (25 g) Sigma-Aldrich Chemie, München, Germany B0126
Xylene cyanol FF (10 g) Sigma-Aldrich Chemie, München, Germany X4126
ComPhor L Maxi  Biozym, Hessisch Oldendorf, Germany
Ethidium bromide solution 1 %(10 mL) Carl Roth, Karlsruhe, Germany 2218.1
Gel Doc 2000 Bio-Rad Laboratories, München, Germany Gel-documentation system 
ExoSAP-IT (500 reactions) Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom 78201
Buffer (10 x) with EDTA  Life Technologies, Darmstadt, Germany 402824
BigDye Terminator Kit v1.1 Life Technologies, Darmstadt, Germany 4337450
Hi-Di formamide (25 mL) Life Technologies, Darmstadt, Germany 4311320
DyeEx 2.0 Spin Kit (250) Qiagen, Hilden, Germany 63206
3130 Genetic Analyzer Life Technologies, Darmstadt, Germany Sequenzer
MicroAmp optical 96-well reaction plate with barcode Life Technologies, Darmstadt, Germany 4306737
3130 Genetic Analyzer, plate base 96-well Life Technologies, Darmstadt, Germany 4317237
3130 Genetic Analyzer, plate retainer 96-well Life Technologies, Darmstadt, Germany 4317241
3130 Genetic Analyzer, well plate septa Life Technologies, Darmstadt, Germany 4315933
3130 Genetic Analyzer, POP-7 Polymer, 7 mL Life Technologies, Darmstadt, Germany 4352759
3130 Genetic Analyzer, 4-Capillary Array, 50 cm Life Technologies, Darmstadt, Germany 4333466
Sequencing Analysis Software 5.4 Life Technologies, Darmstadt, Germany
microflex (the MALDI TOF MS maschine) Bruker Daltonik, Bremen, Germany
MALDI Biotyper (the MALDI TOF MS system) Bruker Daltonik, Bremen, Germany our mMIS
VITEK MS  bioMérieux, Nürtingen, Germany  2nd mMis 
flexControl 3.4 (control software) Bruker Daltonik, Bremen, Germany
Biotyper Realtime Classification 3.1 (RTC), (analysis software) Bruker Daltonik, Bremen, Germany
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g Bruker Daltonik, Bremen, Germany 201344
Peptide Calibration Standard II Bruker Daltonik, Bremen, Germany 222570
MSP 96 target polished steel Bruker Daltonik, Bremen, Germany 8224989
peqgreen  peqlab  37-5010
MALDI Biotyper Galaxy  Bruker Daltonik, Bremen, Germany Part No. 1836007 
Vitek 2  bioMérieux, Nürtingen, Germany  our aMis 
MicroScan  Beckman Coulter  2nd aMis 
BD Phoenix™ Automated Microbiology System BD 3rd aMis 
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) ATCC  postive control for PCR 

References

  1. . . Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , (2010).
  2. . Ch. 5. Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , 81-104 (2010).
  3. Adekambi, T., Drancourt, M., Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17 (1), 37-45 (2009).
  4. Almuzara, M. N., et al. First case of fulminant sepsis due to Wohlfahrtiimonas chitiniclastica. J.Clin.Microbiol. 49 (6), 2333-2335 (2011).
  5. Areekul, S., Vongsthongsri, U., Mookto, T., Chettanadee, S., Wilairatana, P. Sphingobacterium multivorum septicemia: a case report. J.Med.Assoc.Thai. 79 (6), 395-398 (1996).
  6. Aydin, T. T., et al. Chryseobacterium indologenes Septicemia in an Infant. Case Rep.Infect.Dis. 2014, 270521 (2014).
  7. Baillie, S., Ireland, K., Warwick, S., Wareham, D., Wilks, M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br.J.Biomed.Sci. 70 (4), 144-148 (2013).
  8. Benedetti, P., Rassu, M., Pavan, G., Sefton, A., Pellizzer, G. Septic shock, pneumonia, and soft tissue infection due to Myroides odoratimimus: report of a case and review of Myroides infections. Infection. 39 (2), 161-165 (2011).
  9. Bertelli, C., Greub, G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin.Microbiol.Infect. 19 (9), 803-813 (2013).
  10. Bhuyar, G., Jain, S., Shah, H., Mehta, V. K. Urinary tract infection by Chryseobacterium indologenes. Indian J.Med.Microbiol. 30 (3), 370-372 (2012).
  11. Buchan, B. W., Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin.Microbiol.Rev. 27 (4), 783-822 (2014).
  12. Castillo-Rojas, G., et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS ONE. 8 (4), e59491 (2013).
  13. Chatzigeorgiou, K. S., Sergentanis, T. N., Tsiodras, S., Hamodrakas, S. J., Bagos, P. G. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J.Clin.Microbiol. 49 (9), 3284-3291 (2011).
  14. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin.Microbiol.Rev. 17 (4), 840-862 (2004).
  15. Crowley, E., et al. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J.AOAC Int. 95 (3), 778-785 (2012).
  16. Crowley, E., et al. Evaluation of the VITEK 2 gram positive (GP) microbial identification test card: collaborative study. J.AOAC Int. 95 (5), 1425-1432 (2012).
  17. Croxatto, A., Prod’hom, G., Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol.Rev. 36 (2), 380-407 (2012).
  18. Crum-Cianflone, N. F., Matson, R. W., Ballon-Landa, G. Fatal case of necrotizing fasciitis due to Myroides odoratus. Infection. 42 (5), 931-935 (2014).
  19. Deak, E., et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn.Microbiol.Infect.Dis. 81 (1), 27-33 (2015).
  20. DeMarco, M. L., Ford, B. A. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clin.Lab.Med. 33 (3), 611-628 (2013).
  21. Deng, J., et al. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J.Thorac.Dis. 6 (5), 539-544 (2014).
  22. Drancourt, M., Berger, P., Raoult, D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J.Clin.Microbiol. 42 (5), 2197-2202 (2004).
  23. Fenselau, C., Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom.Rev. 20 (4), 157-171 (2001).
  24. Freney, J., et al. Septicemia caused by Sphingobacterium multivorum. J.Clin.Microbiol. 25 (6), 1126-1128 (1987).
  25. Funke, G., Frodl, R., Sommer, H. First comprehensively documented case of Paracoccus yeei infection in a human. J.Clin.Microbiol. 42 (7), 3366-3368 (2004).
  26. Funke, G., Funke-Kissling, P. Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. J.Clin.Microbiol. 42 (9), 4067-4071 (2004).
  27. Funke, G., Funke-Kissling, P. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J.Clin.Microbiol. 43 (1), 84-88 (2005).
  28. Gaillot, O., et al. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J.Clin.Microbiol. 49 (12), 4412 (2011).
  29. Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A., Hewlett, E. L. Whole-genome sequencing in outbreak analysis. Clin.Microbiol.Rev. 28 (3), 541-563 (2015).
  30. Holland, R. D., et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun.Mass Spectrom. 10 (10), 1227-1232 (1996).
  31. Holmes, B., Owen, R. J., Hollis, D. G. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int.J.Syst.Bacteriol. 32 (2), 157-165 (1982).
  32. Holmes, B., Owen, R. J., Weaver, R. E. Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int.J.Syst.Bacteriol. 31 (1), 21-34 (1981).
  33. Jamal, W., Albert, M., Rotimi, V. O. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 14 (1), 289 (2014).
  34. Janda, J. M., Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J.Clin.Microbiol. 45 (9), 2761-2764 (2007).
  35. Jin, W. Y., et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn.Microbiol.Infect.Dis. 70 (4), 442-447 (2011).
  36. Jossart, M. F., Courcol, R. J. Evaluation of an automated system for identification of Enterobacteriaceae and nonfermenting bacilli. Eur.J.Clin.Microbiol.Infect.Dis. 18 (12), 902-907 (1999).
  37. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal.Chem. 60 (20), 2299-2301 (1988).
  38. Koh, Y. R., et al. The first Korean case of Sphingobacterium spiritivorum bacteremia in a patient with acute myeloid leukemia. Ann.Lab.Med. 33 (4), 283-287 (2013).
  39. Kok, J., Chen, S. C., Dwyer, D. E., Iredell, J. R. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology. 45 (1), 4-17 (2013).
  40. Koljalg, S., et al. First report of Wohlfahrtiimonas chitiniclastica from soft tissue and bone infection at an unusually high northern latitude. Folia Microbiol.(Praha). , (2014).
  41. Krishnamurthy, T., Ross, P. L. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun.Mass Spectrom. 10 (15), 1992-1996 (1996).
  42. Ktari, S., et al. Nosocomial outbreak of Myroides odoratimimus urinary tract infection in a Tunisian hospital. J.Hosp.Infect. 80 (1), 77-81 (2012).
  43. Lim, Y. M., Shin, K. S., Kim, J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J.Clin.Microbiol. 45 (3), 902-905 (2007).
  44. Marinella, M. A. Cellulitis and sepsis due to sphingobacterium. JAMA. 288 (16), 1985 (2002).
  45. McElvania, T. E., Shuey, S., Winkler, D. W., Butler, M. A., Burnham, C. A. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin.Microbiol. 51 (5), 1421-1427 (2013).
  46. Mellmann, A., et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J.Clin.Microbiol. 46 (6), 1946-1954 (2008).
  47. Mignard, S., Flandrois, J. P. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J.Microbiol.Methods. 67 (3), 574-581 (2006).
  48. Nomura, F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochim.Biophys.Acta. , (2014).
  49. Opota, O., Croxatto, A., Prod’hom, G., Greub, G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin.Microbiol.Infect. 21 (4), 313-322 (2015).
  50. Patel, J. B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol.Diagn. 6 (4), 313-321 (2001).
  51. Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin.Chem. , (2014).
  52. Pincus, D. H., Miller, M. J. Ch. 1. Encyclopedia of Rapid Microbiological Methods. , 1-32 (2005).
  53. Potvliege, C., et al. Flavobacterium multivorum septicemia in a hemodialyzed patient. J.Clin.Microbiol. 19 (4), 568-569 (1984).
  54. Rebaudet, S., Genot, S., Renvoise, A., Fournier, P. E., Stein, A. Wohlfahrtiimonas chitiniclastica bacteremia in homeless woman. Emerg.Infect.Dis. 15 (6), 985-987 (2009).
  55. Risch, M., et al. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med.Wkly. 140, 13095 (2010).
  56. Schröttner, P., Rudolph, W. W., Eing, B. R., Bertram, S., Gunzer, F. Comparison of VITEK2, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus. Diagn.Microbiol.Infect.Dis. 79 (2), 155-159 (2014).
  57. Schröttner, P., Rudolph, W. W., Taube, F., Gunzer, F. First report on the isolation of Aureimonas altamirensis from a patient with peritonitis. Int.J.Infect.Dis. 29, 71-73 (2014).
  58. Schröttner, P., et al. Actinobacillus equuli ssp. haemolyticus in a semi-occlusively treated horse bite wound in a 2-year-old girl. Ger.Med.Sci. 11, (2013).
  59. Seng, P., et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin.Infect.Dis. 49 (4), 543-551 (2009).
  60. Shahul, H. A., Manu, M. K., Mohapatra, A. K., Chawla, K. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case.Rep. 2014, (2014).
  61. Stackebrandt, E., Göbel, B. M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int.J.Syst.Bacteriol. 44, 846-849 (1994).
  62. Tan, K. E., et al. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J.Clin.Microbiol. 50 (10), 3301-3308 (2012).
  63. Tanaka, K. The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew.Chem.Int.Ed.Engl. 42 (33), 3860-3870 (2003).
  64. Thaiwong, T., Kettler, N. M., Lim, A., Dirkse, H., Kiupel, M. First report of emerging zoonotic pathogen Wohlfahrtiimonas chitiniclastica in the United States. J.Clin.Microbiol. 52 (6), 2245-2247 (2014).
  65. Török, M. E., Peacock, S. J. Rapid whole-genome sequencing of bacterial pathogens in the clinical microbiology laboratory–pipe dream or reality. J.Antimicrob.Chemother. 67 (10), 2307-2308 (2012).
  66. Toth, E. M., et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int.J.Syst.Evol.Microbiol. 58, 976-981 (2008).
  67. Tristezza, M., Gerardi, C., Logrieco, A., Grieco, F. An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. J.Microbiol.Methods. 78 (3), 286-291 (2009).
  68. Valentine, N. B., Wahl, J. H., Kingsley, M. T., Wahl, K. L. Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun.Mass Spectrom. 16 (14), 1352-1357 (2002).
  69. van Veen, S. Q., Claas, E. C., Kuijper, E. J. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J.Clin.Microbiol. 48 (3), 900-907 (2010).
  70. Verma, R. K., Rawat, R., Singh, A., Singh, D. P., Verma, V. Sphingobacterium multivorum causing fatal meningoencephalitis: a rare case report. Int.J.Res.Med.Sci. 2 (4), 1710-1712 (2014).
  71. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W., Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int.J.Syst.Bacteriol. 33 (3), 580-598 (1983).

Play Video

Cite This Article
Schröttner, P., Gunzer, F., Schüppel, J., Rudolph, W. W. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J. Vis. Exp. (113), e53176, doi:10.3791/53176 (2016).

View Video