Summary

16S rRNAの遺伝子配列決定およびMALDI-TOF MSによるレア細菌性病原体の同定

Published: July 11, 2016
doi:

Summary

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.

Abstract

特に免疫不全患者で重篤な感染症を引き起こすことが報告されているため、十分に説明し、稀で、細菌性病原体の数があります。ほとんどの場合、ほとんどの症例報告として公開さわずか数のデータは、感染性病原体などの病原体の役割を調べるが利用可能です。したがって、そのような微生物の病原性の性質を明確にするためには、これらの細菌の多くを含む疫学的研究を行う必要があります。菌株の同定は、彼らが日常的診断において、(堅牢性)扱いやすい経済的でなければならない有効な命名法に従って正確である必要があり、それらは同等の生成する必要があります。このような調査研究で使用した方法は、以下の基準を満たさなければなりません異なる研究所間の結果。一般的に、ルーチンの設定で細菌株を識別するための3つの戦略があります。biochemicaを特徴付ける1)表現型の識別細菌のリットルと代謝特性、2)このような新規のプロ​​テオームベースのアプローチとして、16S rRNA遺伝子配列決定および3)質量分析などの分子技術。質量分析および分子的なアプローチは、細菌種の多種多様を同定するための最も有望なツールであるので、これらの2つの方法が記載されています。これらの技術を使用して進み、制限と潜在的な問題が議論されています。

Introduction

診断ルーチンでは珍しい病原体のセキュアな識別は、古典的、文化的、生化学的方法が煩雑と時々疑問であるという事実によって妨げられています。また、診断微生物学研究室は、自動化されたシステムを使用する必要があり、毎日、数百から数千に及ぶ多数の病原体を、、処理しなければなりません。ハイスループット日々の管理に加えて、細菌種の正確な同定が必要です。彼らは抗菌薬感受性パターンが異なるため、正確な同定は、適切な抗生物質を選択するための重要な情報( 例えば、 エンテロコッカス属、 アシネトバクター。)12,43を臨床医に提供するので、これが保証されています。

自動化された微生物同定システム(AMIS)細菌分離株の代謝特性を特徴づけるために酵素反応の標準化セットを適用<sup> 13,15,16,26,27。これらのシステムで使用されるカートリッジが異なる生化学的反応、 例えば 、多数の利用がAMISのGNカード47は、この研究52で使用されこの戦略は、細菌のみの限定セットのための安全な同定を可能にします。さらに、データベース、高度なエキスパートシステムは、明らかに医学的に重要13,15,16,36の関連と関連性の高い細菌の検出に焦点を当てています。広く研究室で使用される2つの更なるシステムは、また、細菌同定のために、この生化学的手法を適用します。種が35を水平に3 回目のAMIのみ82.4パーセントの識別精度を持っていながら、最近の研究では、本研究で用いたAMISと競合他社の1(93.7パーセントと、それぞれ93.0パーセント)との間で同等の識別精度を実証します。このような差異は、基礎となる識別データの参照、キットおよびソフトウェア、メタボの違いのバージョンの品質によって説明することができますLISMと技術者35,36の習熟度。

二つの自動化されたMALDI-TOF MSシステム(MALDI-TOF微生物同定システム、MMIS)が主に使用されています。これらのシステムは、それらのタンパク質フィンガープリント質量スペクトルに基づいて、細菌種の多数の検出を可能にします。例えば、使用MMISのデータベースは、6000参照スペクトルが含まれています。質量分析に基づく識別システムは、まれな病原体11,48,51を含む微生物の多種多様の高速で信頼性の高い検出を提供しています。現在までにわずか数の直接比較は本研究で用いたMMISとその競争相手19,33の間にご利用いただけます。 Daek らによると、両方のシステムは、識別精度の同様の高い速度を提供するが、この研究で使用MMISは、種の同定19でより信頼性の高いと思われます。

同様に、分子技術はよく保存アドレッシングだけでなく、異なる遺伝子( <em>例えば、16S rDNAのかのrpoB)明確な種の同定3,22,61を可能します。これらのうち、16SのrDNAのため、すべての細菌34におけるその存在の最も広く使用されているハウスキーピング遺伝子です。その機能は変化しないままで、最終的には、およそ1,500塩基対では、バイオインフォマティクス14,34のために適切であることが十分な長さです。多くの研究者が細菌同定21のための「ゴールドスタンダード」として16S rRNA遺伝子解析を考えています。これは、いくつかの研究室が稀または新しい細菌14,34を識別するためのこれまでに、DNA-DNAハイブリダイゼーション技術を使用するという事実によるものです。さらに、より多くのデータベースは、16S rRNA遺伝子の分析50のために使用することができる利用可能です。しかし、それは、16SのrDNAベースの検出システムは、標準的なPCRプロトコールと比較して制限された感度を有することを考慮しなければなりません。また、分子のアプローチは、同様に、時間がかかり洗練され、高度に訓練された人材を必要とします専用の研究施設とでは、そのため、簡単に診断ルーチン55に実装されていません。さらに、細菌の同定の少なくとも2つの異なる方法の組み合わせは非常に正確な株同定をもたらすことが示されています。 MALDI-TOF MS及び16SのrDNA配列の組み合わせは、高精度の異なる細菌種の多くの同定を可能にします。最近、MALDI-TOF MSおよび16S rRNA遺伝子解析の組み合わせは、疫学的な質問や珍しい病原体56を研究する細菌同定のために提示されました。

Protocol

細菌DNAの1の抽出 PBS溶液の調製 1.65グラムのNa 2フラスコ中HPO 4×2H 2 O、0.22グラムのNaH 2 PO 4×2H 2 Oおよび8.80グラムのNaClを秤量し、千ミリリットルの最終容量まで蒸留水で満たします。 pHを7.4に調整します。最終的な使用のための細菌プルーフ(0.22μm)のフィルターを通して溶液をろ過します。 グラム陰性細菌のDNA抽?…

Representative Results

MALDI-TOF MSは、新規、微生物学的診断ルーチンのための高速かつ安価な方法です。 MALDI-TOF MSによる細菌種の同定は、主に、リボソームタンパク質だけでなく、他の「環境条件によって最小限の程度に影響を受けたハウスキーピング機能を備えた非常に保存されたタンパク質」で構成されるスペクトルを生成し、このMMISの17【選択データベースは、参照スペクト…

Discussion

MALDI-TOF MS及び16S rRNA遺伝子配列の両方が異なる細菌の多くを同定する可能性を提供します。 MALDI-TOF MSは、取り扱いが容易であり、細菌の質量スペクトルの大規模なデータベースが利用可能で、高速かつ安価な方法です。このため、MALDI-TOF MSはまれな細菌性病原体17,20,39,51に焦点を当てたスクリーニング研究を実施するための迅速でコスト効率と信頼性の高い方法です。他の表現型の?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Enno Jacobs for his continuing support.

Materials

CHROMASOLV, HPLC grade water, 1 L Sigma-Aldrich Chemie, München, Germany 270733
Tissue Lyser LT Qiagen, Hilden, Germany 85600 Oscillating Homogenizer
Glass-beads 1,0mm VWR International, Darmstadt, Germany 412-2917
Thermomixer 5436 Eppendorf, Hamburg, Germany 2050-100-05
QIAamp DNA Mini Kit (250) Qiagen, Hilden, Germany 51306
Taq PCR Core Kit (1000 U) Qiagen, Hilden, Germany 201225
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) biomers.net GmbH, Ulm, Germany 
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) biomers.net GmbH, Ulm, Germany 
Mastercycler  Eppendorf, Hamburg, Germany Thermocylcer
Reaction tube 1.5 mL SARSTEDT, Nümbrecht, Germany 72,692
Reaction tube 2 mL SARSTEDT, Nümbrecht, Germany 72,693,005
PCR 8er-CapStrips Biozym Scientific, Hessisch Oldendorf, Germany 711040X
PCR 8er-SoftStrips Biozym Scientific, Hessisch Oldendorf, Germany 711030X
Sharp R-ZV11  Sharp Electronics, Hamburg, Germany Microwave
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) Merck, Darmstadt, Germany 1084211000
SeaKem LE Agarose Biozym Scientific, Hessisch Oldendorf, Germany 849006
(2 x 500 g)
SmartLadder SF – 100 to 1000 bp Eurogentec, Lüttich, Belgium MW-1800-04
Bromphenol blue (25 g) Sigma-Aldrich Chemie, München, Germany B0126
Xylene cyanol FF (10 g) Sigma-Aldrich Chemie, München, Germany X4126
ComPhor L Maxi  Biozym, Hessisch Oldendorf, Germany
Ethidium bromide solution 1 %(10 mL) Carl Roth, Karlsruhe, Germany 2218.1
Gel Doc 2000 Bio-Rad Laboratories, München, Germany Gel-documentation system 
ExoSAP-IT (500 reactions) Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom 78201
Buffer (10 x) with EDTA  Life Technologies, Darmstadt, Germany 402824
BigDye Terminator Kit v1.1 Life Technologies, Darmstadt, Germany 4337450
Hi-Di formamide (25 mL) Life Technologies, Darmstadt, Germany 4311320
DyeEx 2.0 Spin Kit (250) Qiagen, Hilden, Germany 63206
3130 Genetic Analyzer Life Technologies, Darmstadt, Germany Sequenzer
MicroAmp optical 96-well reaction plate with barcode Life Technologies, Darmstadt, Germany 4306737
3130 Genetic Analyzer, plate base 96-well Life Technologies, Darmstadt, Germany 4317237
3130 Genetic Analyzer, plate retainer 96-well Life Technologies, Darmstadt, Germany 4317241
3130 Genetic Analyzer, well plate septa Life Technologies, Darmstadt, Germany 4315933
3130 Genetic Analyzer, POP-7 Polymer, 7 mL Life Technologies, Darmstadt, Germany 4352759
3130 Genetic Analyzer, 4-Capillary Array, 50 cm Life Technologies, Darmstadt, Germany 4333466
Sequencing Analysis Software 5.4 Life Technologies, Darmstadt, Germany
microflex (the MALDI TOF MS maschine) Bruker Daltonik, Bremen, Germany
MALDI Biotyper (the MALDI TOF MS system) Bruker Daltonik, Bremen, Germany our mMIS
VITEK MS  bioMérieux, Nürtingen, Germany  2nd mMis 
flexControl 3.4 (control software) Bruker Daltonik, Bremen, Germany
Biotyper Realtime Classification 3.1 (RTC), (analysis software) Bruker Daltonik, Bremen, Germany
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g Bruker Daltonik, Bremen, Germany 201344
Peptide Calibration Standard II Bruker Daltonik, Bremen, Germany 222570
MSP 96 target polished steel Bruker Daltonik, Bremen, Germany 8224989
peqgreen  peqlab  37-5010
MALDI Biotyper Galaxy  Bruker Daltonik, Bremen, Germany Part No. 1836007 
Vitek 2  bioMérieux, Nürtingen, Germany  our aMis 
MicroScan  Beckman Coulter  2nd aMis 
BD Phoenix™ Automated Microbiology System BD 3rd aMis 
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) ATCC  postive control for PCR 

References

  1. . . Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , (2010).
  2. . Ch. 5. Applied Biosystems 3130/3130xl Genetic Analyzers – Getting Started Guide. , 81-104 (2010).
  3. Adekambi, T., Drancourt, M., Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17 (1), 37-45 (2009).
  4. Almuzara, M. N., et al. First case of fulminant sepsis due to Wohlfahrtiimonas chitiniclastica. J.Clin.Microbiol. 49 (6), 2333-2335 (2011).
  5. Areekul, S., Vongsthongsri, U., Mookto, T., Chettanadee, S., Wilairatana, P. Sphingobacterium multivorum septicemia: a case report. J.Med.Assoc.Thai. 79 (6), 395-398 (1996).
  6. Aydin, T. T., et al. Chryseobacterium indologenes Septicemia in an Infant. Case Rep.Infect.Dis. 2014, 270521 (2014).
  7. Baillie, S., Ireland, K., Warwick, S., Wareham, D., Wilks, M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br.J.Biomed.Sci. 70 (4), 144-148 (2013).
  8. Benedetti, P., Rassu, M., Pavan, G., Sefton, A., Pellizzer, G. Septic shock, pneumonia, and soft tissue infection due to Myroides odoratimimus: report of a case and review of Myroides infections. Infection. 39 (2), 161-165 (2011).
  9. Bertelli, C., Greub, G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin.Microbiol.Infect. 19 (9), 803-813 (2013).
  10. Bhuyar, G., Jain, S., Shah, H., Mehta, V. K. Urinary tract infection by Chryseobacterium indologenes. Indian J.Med.Microbiol. 30 (3), 370-372 (2012).
  11. Buchan, B. W., Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin.Microbiol.Rev. 27 (4), 783-822 (2014).
  12. Castillo-Rojas, G., et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS ONE. 8 (4), e59491 (2013).
  13. Chatzigeorgiou, K. S., Sergentanis, T. N., Tsiodras, S., Hamodrakas, S. J., Bagos, P. G. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J.Clin.Microbiol. 49 (9), 3284-3291 (2011).
  14. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin.Microbiol.Rev. 17 (4), 840-862 (2004).
  15. Crowley, E., et al. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J.AOAC Int. 95 (3), 778-785 (2012).
  16. Crowley, E., et al. Evaluation of the VITEK 2 gram positive (GP) microbial identification test card: collaborative study. J.AOAC Int. 95 (5), 1425-1432 (2012).
  17. Croxatto, A., Prod’hom, G., Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol.Rev. 36 (2), 380-407 (2012).
  18. Crum-Cianflone, N. F., Matson, R. W., Ballon-Landa, G. Fatal case of necrotizing fasciitis due to Myroides odoratus. Infection. 42 (5), 931-935 (2014).
  19. Deak, E., et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn.Microbiol.Infect.Dis. 81 (1), 27-33 (2015).
  20. DeMarco, M. L., Ford, B. A. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clin.Lab.Med. 33 (3), 611-628 (2013).
  21. Deng, J., et al. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J.Thorac.Dis. 6 (5), 539-544 (2014).
  22. Drancourt, M., Berger, P., Raoult, D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J.Clin.Microbiol. 42 (5), 2197-2202 (2004).
  23. Fenselau, C., Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom.Rev. 20 (4), 157-171 (2001).
  24. Freney, J., et al. Septicemia caused by Sphingobacterium multivorum. J.Clin.Microbiol. 25 (6), 1126-1128 (1987).
  25. Funke, G., Frodl, R., Sommer, H. First comprehensively documented case of Paracoccus yeei infection in a human. J.Clin.Microbiol. 42 (7), 3366-3368 (2004).
  26. Funke, G., Funke-Kissling, P. Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. J.Clin.Microbiol. 42 (9), 4067-4071 (2004).
  27. Funke, G., Funke-Kissling, P. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J.Clin.Microbiol. 43 (1), 84-88 (2005).
  28. Gaillot, O., et al. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J.Clin.Microbiol. 49 (12), 4412 (2011).
  29. Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A., Hewlett, E. L. Whole-genome sequencing in outbreak analysis. Clin.Microbiol.Rev. 28 (3), 541-563 (2015).
  30. Holland, R. D., et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun.Mass Spectrom. 10 (10), 1227-1232 (1996).
  31. Holmes, B., Owen, R. J., Hollis, D. G. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int.J.Syst.Bacteriol. 32 (2), 157-165 (1982).
  32. Holmes, B., Owen, R. J., Weaver, R. E. Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int.J.Syst.Bacteriol. 31 (1), 21-34 (1981).
  33. Jamal, W., Albert, M., Rotimi, V. O. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 14 (1), 289 (2014).
  34. Janda, J. M., Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J.Clin.Microbiol. 45 (9), 2761-2764 (2007).
  35. Jin, W. Y., et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn.Microbiol.Infect.Dis. 70 (4), 442-447 (2011).
  36. Jossart, M. F., Courcol, R. J. Evaluation of an automated system for identification of Enterobacteriaceae and nonfermenting bacilli. Eur.J.Clin.Microbiol.Infect.Dis. 18 (12), 902-907 (1999).
  37. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal.Chem. 60 (20), 2299-2301 (1988).
  38. Koh, Y. R., et al. The first Korean case of Sphingobacterium spiritivorum bacteremia in a patient with acute myeloid leukemia. Ann.Lab.Med. 33 (4), 283-287 (2013).
  39. Kok, J., Chen, S. C., Dwyer, D. E., Iredell, J. R. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology. 45 (1), 4-17 (2013).
  40. Koljalg, S., et al. First report of Wohlfahrtiimonas chitiniclastica from soft tissue and bone infection at an unusually high northern latitude. Folia Microbiol.(Praha). , (2014).
  41. Krishnamurthy, T., Ross, P. L. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun.Mass Spectrom. 10 (15), 1992-1996 (1996).
  42. Ktari, S., et al. Nosocomial outbreak of Myroides odoratimimus urinary tract infection in a Tunisian hospital. J.Hosp.Infect. 80 (1), 77-81 (2012).
  43. Lim, Y. M., Shin, K. S., Kim, J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J.Clin.Microbiol. 45 (3), 902-905 (2007).
  44. Marinella, M. A. Cellulitis and sepsis due to sphingobacterium. JAMA. 288 (16), 1985 (2002).
  45. McElvania, T. E., Shuey, S., Winkler, D. W., Butler, M. A., Burnham, C. A. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin.Microbiol. 51 (5), 1421-1427 (2013).
  46. Mellmann, A., et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J.Clin.Microbiol. 46 (6), 1946-1954 (2008).
  47. Mignard, S., Flandrois, J. P. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J.Microbiol.Methods. 67 (3), 574-581 (2006).
  48. Nomura, F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochim.Biophys.Acta. , (2014).
  49. Opota, O., Croxatto, A., Prod’hom, G., Greub, G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin.Microbiol.Infect. 21 (4), 313-322 (2015).
  50. Patel, J. B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol.Diagn. 6 (4), 313-321 (2001).
  51. Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin.Chem. , (2014).
  52. Pincus, D. H., Miller, M. J. Ch. 1. Encyclopedia of Rapid Microbiological Methods. , 1-32 (2005).
  53. Potvliege, C., et al. Flavobacterium multivorum septicemia in a hemodialyzed patient. J.Clin.Microbiol. 19 (4), 568-569 (1984).
  54. Rebaudet, S., Genot, S., Renvoise, A., Fournier, P. E., Stein, A. Wohlfahrtiimonas chitiniclastica bacteremia in homeless woman. Emerg.Infect.Dis. 15 (6), 985-987 (2009).
  55. Risch, M., et al. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med.Wkly. 140, 13095 (2010).
  56. Schröttner, P., Rudolph, W. W., Eing, B. R., Bertram, S., Gunzer, F. Comparison of VITEK2, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus. Diagn.Microbiol.Infect.Dis. 79 (2), 155-159 (2014).
  57. Schröttner, P., Rudolph, W. W., Taube, F., Gunzer, F. First report on the isolation of Aureimonas altamirensis from a patient with peritonitis. Int.J.Infect.Dis. 29, 71-73 (2014).
  58. Schröttner, P., et al. Actinobacillus equuli ssp. haemolyticus in a semi-occlusively treated horse bite wound in a 2-year-old girl. Ger.Med.Sci. 11, (2013).
  59. Seng, P., et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin.Infect.Dis. 49 (4), 543-551 (2009).
  60. Shahul, H. A., Manu, M. K., Mohapatra, A. K., Chawla, K. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case.Rep. 2014, (2014).
  61. Stackebrandt, E., Göbel, B. M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int.J.Syst.Bacteriol. 44, 846-849 (1994).
  62. Tan, K. E., et al. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J.Clin.Microbiol. 50 (10), 3301-3308 (2012).
  63. Tanaka, K. The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew.Chem.Int.Ed.Engl. 42 (33), 3860-3870 (2003).
  64. Thaiwong, T., Kettler, N. M., Lim, A., Dirkse, H., Kiupel, M. First report of emerging zoonotic pathogen Wohlfahrtiimonas chitiniclastica in the United States. J.Clin.Microbiol. 52 (6), 2245-2247 (2014).
  65. Török, M. E., Peacock, S. J. Rapid whole-genome sequencing of bacterial pathogens in the clinical microbiology laboratory–pipe dream or reality. J.Antimicrob.Chemother. 67 (10), 2307-2308 (2012).
  66. Toth, E. M., et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int.J.Syst.Evol.Microbiol. 58, 976-981 (2008).
  67. Tristezza, M., Gerardi, C., Logrieco, A., Grieco, F. An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. J.Microbiol.Methods. 78 (3), 286-291 (2009).
  68. Valentine, N. B., Wahl, J. H., Kingsley, M. T., Wahl, K. L. Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun.Mass Spectrom. 16 (14), 1352-1357 (2002).
  69. van Veen, S. Q., Claas, E. C., Kuijper, E. J. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J.Clin.Microbiol. 48 (3), 900-907 (2010).
  70. Verma, R. K., Rawat, R., Singh, A., Singh, D. P., Verma, V. Sphingobacterium multivorum causing fatal meningoencephalitis: a rare case report. Int.J.Res.Med.Sci. 2 (4), 1710-1712 (2014).
  71. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W., Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int.J.Syst.Bacteriol. 33 (3), 580-598 (1983).

Play Video

Cite This Article
Schröttner, P., Gunzer, F., Schüppel, J., Rudolph, W. W. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J. Vis. Exp. (113), e53176, doi:10.3791/53176 (2016).

View Video