Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.
Il y a un certain nombre d'agents pathogènes bactériens rares et, par conséquent, décrit insuffisamment qui sont signalés à causer des infections graves en particulier chez les patients immunodéprimés. Dans la plupart des cas, seules quelques données, pour la plupart publiées sous forme de rapports de cas, sont disponibles qui enquête sur le rôle de ces agents pathogènes comme un agent infectieux. Par conséquent, afin de clarifier le caractère pathogène de ces micro-organismes, il est nécessaire de mener des études épidémiologiques qui comprennent un grand nombre de ces bactéries. Les méthodes utilisées dans cette étude de surveillance doivent répondre aux critères suivants: l'identification des souches doit être précise selon la nomenclature en cours de validité, ils devraient être faciles à manipuler (robustesse), économique dans le diagnostic de routine et ils doivent générer comparables les résultats entre les différents laboratoires. En général, il existe trois stratégies pour identifier des souches bactériennes dans un cadre de routine: 1) l'identification phénotypique caractérisant le Biochemical et métaboliques propriétés des bactéries, 2) les techniques moléculaires telles que le séquençage du gène ARNr 16S et 3) la spectrométrie de masse comme une approche basée roman protéome. Etant donné que la spectrométrie de masse et les approches moléculaires sont les outils les plus prometteurs pour l'identification d'une grande variété d'espèces bactériennes, ces deux méthodes sont décrites. Les progrès, les limites et les problèmes potentiels lors de l'utilisation de ces techniques sont discutées.
Identification sécurisée des agents pathogènes rares dans le diagnostic de routine est entravée par le fait que les méthodes culturales et biochimiques classiques sont encombrants et parfois discutable. En outre, un laboratoire de microbiologie diagnostique doit traiter un grand nombre d'agents pathogènes, allant de quelques centaines à plusieurs milliers par jour, ce qui nécessite l'utilisation de systèmes automatisés. En plus de la gestion d'un débit journalier élevé, l'identification précise des espèces bactériennes est nécessaire. Cela est justifié car ils diffèrent dans leur modèle de sensibilité aux antimicrobiens et l' identification correcte fournit donc le clinicien des informations essentielles pour choisir les antibiotiques appropriés (par exemple, Enterococcus spp., Acinetobacter spp.) 12,43.
systèmes d'identification microbienne automatisée (MUAS) appliquent un ensemble normalisé de réactions enzymatiques pour caractériser les propriétés métaboliques des isolats bactériens <sup> 13,15,16,26,27. Bien que les cartouches utilisées dans ces systèmes utilisent un grand nombre de différentes réactions biochimiques, par exemple, 47 dans la carte GN du MUAS utilisé dans cette étude 52, ce permis de stratégie identification sécurisée seulement pour un ensemble limité de bactéries. En outre, la base de données, un système expert avancé, est clairement axé sur la détection de bactéries pertinentes et hautement pertinentes d'importance médicale 13,15,16,36. Deux autres systèmes, largement utilisés dans les laboratoires, appliquent également cette approche biochimique pour l'identification bactérienne. Des études récentes démontrent une précision d'identification comparable entre les MUAS utilisés dans cette étude et l' un des concurrents (93,7% et 93,0% respectivement), tandis que le 3 ème MUAS a une précision d'identification de seulement 82,4% sur les espèces de niveau 35. Ces écarts peuvent être expliqués par la qualité des références de données d'identification sous-jacentes, les versions de kits et de logiciels, les différences de metabolisme et la compétence du personnel technique 35,36.
Deux systèmes automatisés MALDI-TOF MS (MALDI-TOF système d'identification microbienne, IHMs) sont principalement utilisés. Ces systèmes permettent la détection d'un grand nombre d'espèces bactériennes en fonction de leurs spectres de masse des protéines d'empreintes digitales. Par exemple, la base de données des IHMs utilisées contient des spectres de référence 6000. Les systèmes d'identification basés sur la spectrométrie de masse offrent une détection rapide et fiable d'une grande variété de micro – organismes , y compris les agents pathogènes rares 11,48,51. À ce jour , seulement quelques comparaisons directes sont disponibles entre les IHMs utilisés dans cette étude et son concurrent 19,33. Selon Daek et al. Les deux systèmes offrent un taux de précision de l' identification similaire élevé, mais les IHMs utilisés dans cette étude semble être plus fiable dans l' identification des espèces 19.
gènes distincts De même, les techniques moléculaires adressage bien conservées mais aussi ( <em> par exemple, ADNr 16S ou rpoB) permettent une identification claire des espèces 3,22,61. Parmi ceux – ci, l'ADNr 16S est le gène le plus largement utilisé de ménage en raison de sa présence dans toutes les bactéries 34. Sa fonction reste inchangée et , finalement, avec environ 1 500 pb, il est assez long pour être adapté à la bio-informatique 14,34. De nombreux chercheurs considèrent ARNr 16S analyse génétique comme «étalon-or» pour l' identification bactérienne 21. Cela est dû au fait que quelques laboratoires utilisent des techniques d'hybridation ADN-ADN à ce jour pour l' identification des rares ou nouvelles bactéries 14,34. En outre, de plus en plus des bases de données sont disponibles qui peuvent être utilisés pour l' analyse de l' ARNr 16S des gènes 50. Cependant, il doit être pris en compte que les systèmes de détection basés sur l'ADNr 16S ont une sensibilité limitée par rapport aux protocoles de PCR standard. En outre, l'approche moléculaire est sophistiquée, du temps et nécessite un personnel hautement qualifié, ainsi queinstallations de laboratoire dédiées et est, par conséquent, pas facilement mis en œuvre dans le diagnostic de routine 55. En outre, il a été montré que la combinaison d'au moins deux procédés différents d'identification des bactéries conduit à l'identification des souches très précis. La combinaison de séquençage MALDI-TOF MS et ADNr 16S permet d'identifier un grand nombre de différentes espèces bactériennes avec une grande précision. Récemment , la combinaison de l' analyse du gène MALDI-TOF MS et ARNr 16S a été présenté pour l' identification bactérienne étudier les questions épidémiologiques et des agents pathogènes rares 56.
Deux MALDI-TOF et le séquençage du gène de l'ARNr 16S offrent la possibilité d'identifier un grand nombre de bactéries différentes. MALDI-TOF MS est une méthode rapide et peu coûteuse, qui est facile à manipuler et de grandes bases de données de spectres de masse bactérienne sont disponibles. Pour cette raison, MALDI-TOF MS est un coût moyen rapide, efficace et fiable pour mener des études de dépistage axés sur les bactéries pathogènes rares 17,20,39,51. Dans une étude prospective co…
The authors have nothing to disclose.
The authors would like to thank Prof. Enno Jacobs for his continuing support.
CHROMASOLV, HPLC grade water, 1 L | Sigma-Aldrich Chemie, München, Germany | 270733 | |
Tissue Lyser LT | Qiagen, Hilden, Germany | 85600 | Oscillating Homogenizer |
Glass-beads 1,0mm | VWR International, Darmstadt, Germany | 412-2917 | |
Thermomixer 5436 | Eppendorf, Hamburg, Germany | 2050-100-05 | |
QIAamp DNA Mini Kit (250) | Qiagen, Hilden, Germany | 51306 | |
Taq PCR Core Kit (1000 U) | Qiagen, Hilden, Germany | 201225 | |
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) | biomers.net GmbH, Ulm, Germany | – | |
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) | biomers.net GmbH, Ulm, Germany | – | |
Mastercycler | Eppendorf, Hamburg, Germany | - | Thermocylcer |
Reaction tube 1.5 mL | SARSTEDT, Nümbrecht, Germany | 72,692 | |
Reaction tube 2 mL | SARSTEDT, Nümbrecht, Germany | 72,693,005 | |
PCR 8er-CapStrips | Biozym Scientific, Hessisch Oldendorf, Germany | 711040X | |
PCR 8er-SoftStrips | Biozym Scientific, Hessisch Oldendorf, Germany | 711030X | |
Sharp R-ZV11 | Sharp Electronics, Hamburg, Germany | – | Microwave |
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) | Merck, Darmstadt, Germany | 1084211000 | |
SeaKem LE Agarose | Biozym Scientific, Hessisch Oldendorf, Germany | 849006 | |
(2 x 500 g) | |||
SmartLadder SF – 100 to 1000 bp | Eurogentec, Lüttich, Belgium | MW-1800-04 | |
Bromphenol blue (25 g) | Sigma-Aldrich Chemie, München, Germany | B0126 | |
Xylene cyanol FF (10 g) | Sigma-Aldrich Chemie, München, Germany | X4126 | |
ComPhor L Maxi | Biozym, Hessisch Oldendorf, Germany | – | |
Ethidium bromide solution 1 %(10 mL) | Carl Roth, Karlsruhe, Germany | 2218.1 | |
Gel Doc 2000 | Bio-Rad Laboratories, München, Germany | – | Gel-documentation system |
ExoSAP-IT (500 reactions) | Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom | 78201 | |
Buffer (10 x) with EDTA | Life Technologies, Darmstadt, Germany | 402824 | |
BigDye Terminator Kit v1.1 | Life Technologies, Darmstadt, Germany | 4337450 | |
Hi-Di formamide (25 mL) | Life Technologies, Darmstadt, Germany | 4311320 | |
DyeEx 2.0 Spin Kit (250) | Qiagen, Hilden, Germany | 63206 | |
3130 Genetic Analyzer | Life Technologies, Darmstadt, Germany | – | Sequenzer |
MicroAmp optical 96-well reaction plate with barcode | Life Technologies, Darmstadt, Germany | 4306737 | |
3130 Genetic Analyzer, plate base 96-well | Life Technologies, Darmstadt, Germany | 4317237 | |
3130 Genetic Analyzer, plate retainer 96-well | Life Technologies, Darmstadt, Germany | 4317241 | |
3130 Genetic Analyzer, well plate septa | Life Technologies, Darmstadt, Germany | 4315933 | |
3130 Genetic Analyzer, POP-7 Polymer, 7 mL | Life Technologies, Darmstadt, Germany | 4352759 | |
3130 Genetic Analyzer, 4-Capillary Array, 50 cm | Life Technologies, Darmstadt, Germany | 4333466 | |
Sequencing Analysis Software 5.4 | Life Technologies, Darmstadt, Germany | – | |
microflex (the MALDI TOF MS maschine) | Bruker Daltonik, Bremen, Germany | – | |
MALDI Biotyper (the MALDI TOF MS system) | Bruker Daltonik, Bremen, Germany | – | our mMIS |
VITEK MS | bioMérieux, Nürtingen, Germany | 2nd mMis | |
flexControl 3.4 (control software) | Bruker Daltonik, Bremen, Germany | – | |
Biotyper Realtime Classification 3.1 (RTC), (analysis software) | Bruker Daltonik, Bremen, Germany | – | |
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g | Bruker Daltonik, Bremen, Germany | 201344 | |
Peptide Calibration Standard II | Bruker Daltonik, Bremen, Germany | 222570 | |
MSP 96 target polished steel | Bruker Daltonik, Bremen, Germany | 8224989 | |
peqgreen | peqlab | 37-5010 | |
MALDI Biotyper Galaxy | Bruker Daltonik, Bremen, Germany | Part No. 1836007 | |
Vitek 2 | bioMérieux, Nürtingen, Germany | our aMis | |
MicroScan | Beckman Coulter | 2nd aMis | |
BD Phoenix™ Automated Microbiology System | BD | 3rd aMis | |
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) | ATCC | postive control for PCR |