A two-step procedure for the synthesis of pharmaceutically active indole-derivatives by C-H functionalization with anilines is described, using photo- and Brønsted acid catalysis.
The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.
La funzionalizzazione diretta di legami CH è un obiettivo importante e in piedi a lungo in chimica organica 1. Tali trasformazioni possono essere molto potenti per snellire sintesi salvando passi, tempo e materiale rispetto ai metodi convenzionali che richiedono l'introduzione e la rimozione di attivare o dirigere gruppi. Pertanto, la funzionalizzazione di legami CH è anche interessante per la chimica verde 2. In condizioni di ossidazione, due legami CH o un CH e un legame eteroatomo-H può essere trasformato in legami CC e C-eteroatomo, rispettivamente (Figura 1) 3-9. Spesso queste reazioni di accoppiamento ossidativo richiedono ossidanti sintetici, catalizzatori costosi o alte temperature. Pertanto, molti tentativi di sviluppare metodi che utilizzano catalizzatori economici, condizioni benigne e ossigeno o aria come ossidante morsetto 10.
<img alt="Figura 1" fo:content-width = "5in" src = "/ files/ftp_upload/51504/51504fig1highres.jpg" width = "500" />
Figura 1. Reazioni di accoppiamento ossidativo. cliccate qui per vedere una versione più grande di questa figura.
Molti composti organici reagiscono lentamente con l'ossigeno dall'aria in reazioni di autossidazione che può funzionalizzare legami CH inserendo efficacemente O 2, formando una porzione idroperossido 11,12. Processi di autossidazione sono utilizzati su scala industriale di composti ossigenati generati da cariche idrocarburiche, ma autossidazione è anche un processo indesiderato se porta alla decomposizione di composti o materiali pregiati. In alcuni casi, ad esempio etere etilico, idroperossidi formate in aria possono anche essere esplosivi. Recentemente, abbiamo scoperto una reazione che utilizza un autossidazione per formare un nuovo legame CC da legami CH, senza necessità di un redox-attiva catalizzatore 13,14 </sup>. Semplicemente mescolando i substrati sotto ossigeno in presenza di un catalizzatore acido porta alla formazione dei nuovi prodotti. Chiave per la reazione è la formazione di idroperossidi facile intermedi, che vengono sostituiti con il secondo substrato mediante catalisi acida 15. La reazione, tuttavia, è limitato a xanthene e alcuni composti correlati che vengono facilmente ossidati sotto una atmosfera di ossigeno ed i prodotti hanno applicazioni finora non trovati. Tuttavia ispirato da questa scoperta, abbiamo sviluppato un metodo di accoppiamento ossidativo correlati che utilizza il principio della CH funzionalizzazione via perossidi intermedi (chips) di sintetizzare derivati farmacologicamente attive indolici 16.
Indoli, soprattutto tetrahydrocarbazoles 1, può essere facilmente ossidato a idroperossidi 2 in presenza di ossigeno singoletto 17-19, che può essere generato utilizzando un sensibilizzante e luce visibile 20. A hydrporzione operoxide potrebbero servire come un gruppo uscente, se attivato da catalisi acida e consentire l'introduzione di un nucleofilo 21,22. Idroperossidi sono anche noti per sottoporsi acido catalizzata reazioni di riarrangiamento come utilizzato nella sintesi industriale del fenolo da cumene, il processo Hock 23. Con attenti studi di ottimizzazione, siamo riusciti a trovare le condizioni per favorire la reazione di sostituzione desiderata con N-nucleofili come aniline 3 oltre i percorsi di decomposizione indesiderate riarrangiamento 16. Qui, descriviamo questa procedura CHIPS due fasi in dettaglio, utilizzando solo la luce visibile, un sensibilizzatore, ossigeno e acido. Tra i prodotti selezionati sono derivati indolici 4, che mostrano elevata attività antivirale o inibiscono il fattore di crescita vascolare endoteliale (VGF), che può essere importante per la terapia tumorale 24-26.
In sintesi, potremmo dimostrare che un legame CH in tetrahydrocarbazoles può essere comodamente funzionalizzato per generare prodotti CN-accoppiamento in una procedura in due fasi.
Il primo passo è un noto ossidazione photocatalyzed di tetrahydrocarbazole (1) o suoi derivati con ossigeno elementare 17,19, dando un idroperossido 2. Se eseguita in toluene, i prodotti idroperossido precipitano e possono essere convenientemente isolati mediant…
The authors have nothing to disclose.
Financial support from the DFG (Heisenberg scholarship to M.K., KL 2221/4-1; KL 2221/3-1) and the Max-Planck-Institut fuer Kohlenforschung is gratefully acknowledged.
1,2,3,4-Tetrahydrocarbazole | Sigma Aldrich | T12408 | If coloured, purification may be necessary. See Protocol 1.1 |
Methanol | Sigma Aldrich | 322415 | 99.8% purity |
4-Nitroaniline | Acros Organics | 128371000 | 99% purity |
Trifluoroacetic acid | Sigma Aldrich | T6508 | 99% purity |
Acetic acid | J. T. Baker | JTB RS 426960101 | 99-100% purity |
Aniline | Merck | 8222560100 | |
4-Aminobenzonitrile | Sigma Aldrich | 147753 | 98% purity |