Dendritic cells (DCs) secrete IL-1β in response to TLR8 recognition of synthetic purine, R848, followed by NLRP3 inflammasome activation with nigericin, therefore, IL-1β can be used to measure NLRP3 inflammasome activity. Intracellular cytokine staining, immunoblotting, and ELISA are used to accurately measure NLRP3 inflammasome priming and activation via IL-1β expression.
Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control1,2 . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection1-5.
Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion6. Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin.
Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.
Activation of innate immune system is required to steer adaptive immune responses during infection, disease, and vaccination7. Dendritic cells are the most potent antigen presenting cells of the innate immune system; they are specialized for uptake of antigens, migration to lymph nodes, and activation of naïve CD4+ and cytolytic CD8+ T-cells8-10. To enable rapid pathogen detection the innate immune system utilizes numerous germline encoded pattern recognition receptors (PRR) that recognize conserved pathogen derived motifs or host derived markers of cell stress and damage. Toll like receptors (TLRs) are membrane bound pattern recognition receptors that recognize certain extracellular phagocytized pathogen associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs). By contrast nod like receptors (NLRs) are cytosolic and respond to a diverse range of PAMPs and DAMPs. Nod like receptors represent a second line of defense against pathogens that evade cell surface and endocytic PRRs. The interaction of pathogen derived, or “danger” associated, factors with TLR and NLR ligands leads to a state of DC maturation resulting in increased DC interaction with other immune cells and promotion of T cell and natural killer cell activation11.
Interleukin-1β is a crucial component of the host defense against infection. Upon recognition of a microorganism, the highly proinflammatory cytokine, IL-1β, is secreted and functions as a chemo attractant and activator of innate and adaptive immune cells. In vivo IL-1β is largely responsible for the acute phase response including fever and inflammatory cytokine synthesis12.
Most NLRs contain a C terminal leucine rich repeat domain that is thought to function in ligand sensing, a central nucleotide binding domain (NACHT) that is important for NLRP3 oligomerization, and an N terminal effector domain (PYD in NLRP3) that mediates signal transduction to downstream targets through protein protein interactions. The NLRP3 protein defines the most intensely studied inflammasome complex. This protein is a member of the NLR family and has the ability to form a multi molecular protein complex composed of NLRP3, the adaptor protein PYCARD (also known as ASC), and ICE. Upon inflammasome activation PYCARD binds to NLRP3 N terminal domains and recruits ICE via caspase activation and recruitment domain (CARD) domains. Interleukin-1 converting enzyme is initially generated as a zymogen containing a CARD motif at its N-terminus. Inflammasome formation results in bringing two ICE molecules sufficiently close to induce their autocatalytic activation. The inflammasome complex is necessary for activating ICE thus allowing it to convert cytoplasmic pro-IL-1β to mature cytokine.
Successful secretion of IL-1β in DCs requires sensing of two different and independent danger signals. First, TLR sensing of PAMPs, DAMPs, or cytokine signaling (TNFα or IL-1β) causes an upregulation of cytoplasmic pro-IL-1β protein expression. A second, often different, signal is required for inflammasome complex formation upstream of ICE maturation. A few inflammasome stimulating signals include bacterial membrane pore forming toxins (such as nigericin), lysosomal disrupting crystals (such as monosodium urate crystals, MSU), and extracellular ATP. The upstream mechanism leading to NLRP3 inflammasome activation by these diverse activators is unclear. Studies investigating signaling upstream of inflammasome formation proposes that intracellular events, such as induction of hypokalemia or reactive oxygen species (ROS) indirectly activate the inflammasome13-28.
Amongst the different viral activators of the NLRP3 inflammasome is influenza, which provides both the primary and secondary signal required for IL-1β secretion3,29-33 . Using mouse NLRP3 knockout models it was found that IL-1β secretion in DCs is NLRP3 dependent32. Additionally, NLRP3 knockout mice attracted fewer leukocytes to the site of infection and experienced higher mortality2,5. Two recent papers suggest a mechanism for NLRP3 inflammasome activation during Influenza virus infection; first, priming through recognition of viral RNA by TLR7 or TLR8 (depending on TLR expression of the responding cell) or through sensing of commensal bacteria by other TLRs to induce cytoplasmic pro-IL-1β expression, followed by a second signal, activation of NLRP3 inflammasome formation by viral ion channel protein M2 on the trans Golgi network33,34. In the latter step, triggering of the NLRP3 inflammasome is accomplished by disturbance of the intracellular ionic milieu leading to ROS production, which is, simply, sensed by NLPR3 as a signal to form the inflammasome. However, the precise mechanism of inflammasome activation upstream of ICE activity during Influenza infection still remains unclear.
This work describes a technique valuable for studying the NLRP3 inflammasome in human moDCs that can be used as a foundation for further investigation of the pathway underlying DC based IL-1β secretion in response to TLR8 ligation with R848 followed by activation of the inflammasome by a well known activator of NLRP3, nigericin. Variations of this method can be used with other cell types including, but not limited to: monocytes, macrophages, other DC subsets, and epithelial cells.
Ethics Statement: Research samples are obtained and stored for research with donors’ consent. All samples should be coded or anonymized prior to use. This protocol follows the guidelines of our Institutional Review Board.
1. Differentiation of Human Peripheral Blood Monocytes into Monocyte Derived Dendritic Cells.
Note: Human buffy coats serve as the source of human peripheral blood cells (PBMCs) and were obtained from the New York Blood Center (New York, NY). Blood donors are healthy volunteers. The 5 day procedure begins with the plating of human peripheral blood mononuclear cells (PBMCs) onto tissue culture flasks35,36. Notable differences from the published protocols are the following:
2. Priming the Inflammasome – Signal 1
3. Activating the NLRP3 Inflammasome – Signal 2
4. IL-1ß Sample Collection
5. Measuring IL-1ß From Cellular and Supernatant Samples
These techniques measure TLR8 priming with R848. Intracellular cytokine staining for pro-IL-1β allows for microscopy and FACs readouts from CD14–CD11c+ moDCs. Both techniques can be quantified relative to a non primed, or resting, cell control as well as an isotype control (Figures 1 and 2). Percent of pro-IL-1β+ staining cells is multiplied by the geometric median of this population to provide the median fluorescent intensity (MFI). The MFI is comparable to the amount of pro-IL-1β present in the positive staining cells.
Immunoblotting measures pro-IL-1β from cell lysate, which is then quantified relative to an internal cellular control, such as β-tubulin or β-actin (Figure 3). Immunoblotting for pro-IL-1β in nigericin treated cells should reveal a decrease in pro-IL-1β. This is complemented by a concurrent increase in IL-1β in supernatants, measured by ELISA, only in R848 followed by nigericin conditions (Figures 3 and 4). All other conditions should result in no extracellular IL-1β present. Simultaneous measure of other inflammatory cytokines, such as TNFα, IL-10, and IL-6, ensure that nigericin is specific in causing the secretion of IL-1β. The level of priming is time (Figure 3) and dose (Figure 4) dependent, a response reflected in the degree of intracellular pro-IL-1β in R848 primed and extracellular IL-1β (as well as TNFα, IL-10, and IL-6) secretion in all R848 treated conditions (Figure 4).
Figure 1. Cytoplasmic pro-IL-1β is detected by flow cytometry. Please click here to view a larger version of this figure.
Figure 2. Cytoplasmic pro-IL-1β is detected by microscopy. Please click here to view a larger version of this figure.
Figure 3. Cytoplasmic pro-IL-1β is detected by SDS-Page. Please click here to view a larger version of this figure.
Figure 4. Secreted IL-1β is detected by ELISA. Please click here to view a larger version of this figure.
Inflammatory cytokines are integral in steering the innate and adaptive immune response to fight viral infection. Secreted IL-1β has been shown to increase during Influenza infection3,43,44 . The precise mechanisms by which these cytokines are processed in response to viral recognition in human dendritic cells are not fully understood. Myeloid DC isolation kits are expensive and time consuming. Isolation kits and FAC sorting may unintentionally stress or activate the cells. Additionally, there is frequently insufficient amount of isolated cells for experimentation. Fortunately, the biology of human moDCs closely models that of primary human myeloid DCs in vitro45,46 . Both cell types require two signals, TLR priming and NLRP3 activating, to achieve mature IL-1β secretion. Therefore, moDCs provide and affordable and simple DC model cell type to study and better understand the relevance and role of the NLRP3 inflammasome in human health and disease.
The detection of IL-1β utilizing the methods described here provides various simple and effective immunoassays to study diseases with inflammatory associated pathologies, including viral RNA infection; specifically, how to measure IL-1β in a variety of ways in response to R848 and nigericin stimulation. Other TLR agonists (such as Poly(I:C) and LPS) and NLRP3 inflammasome activators (such as ATP and MSU) can be used to measure this activity upon stimulation in the context of other disease pathologies; however, stimulation times and conditions may need to be adjusted. Reagent exposure times and concentrations would also need to be adjusted when modifying this protocol for use in other cell types and species.
All conditions should be run in triplicate and the response weighed carefully for quality control purposes; it is common for great donor variability to exist. Monocyte derived DCs are a cell type, not a cell line, and heterogeneity exists within a moDC culture.
Priming can be confirmed with ICS for pro-IL-1β and comparing resting moDCs to the R848-primed condition. Resting moDCs should not result in positive staining. Priming may also be validated by immunoblotting for the expression of pro-IL-1β. Successful R848 priming results in the secretion of proinflammatory cytokines TNFα, IL-6, and the immunomodulatory cytokine IL-10 with minimal secretion of IL-1β. Inflammasome activated cells should not show a further increase in TNFα, IL-6, and IL-10 secretion but will have an increase in secreted IL-1β concentrations compared to unactivated cells.
Pro-IL-1β may be passively released during necrotic cell death therefore bioavailability assays might be of interest. Alternatively, immunoblotting can be performed on supernatants to determine the molecular weight of secreted IL-1β to ensure active IL-1β is the form of the cytokine secreted; mature IL-1β is 17 kDa while the precursor is 31 kDa. To measure IL-1β from supernatants, cell concentration will have to be adjusted to achieve a positive signal above the detection limit. Caspase-1 activation can also be measured via a variety of methods to determine inflammasome activation.
The authors have nothing to disclose.
The authors would like to acknowledge Olivier Manches, Ph.D., Davor Frleta, Ph.D., and Meagan O’Brien, M.D. for their support and feedback. This research was supported by the National Institute of Allergy and Infectious Disease and completed with funding from NIH grants Ruth L. Kirschstein National Research Service Awards for Individual Predoctoral Fellowships (F31) to Promote Diversity in Health-Related Research (AI089030) and RO1 (AI081848).
Name of Reagent/ Equipment | Company | Catalog Number | Comments/Description |
IL-4 | R&D | ||
GM-CSF | Genzyme | NDC 58468-0180-2 | We acquire this item through our local pharmacy with a prescription |
RPMI 1640 with L-glutamine | Cellgro | 10-040-CV | |
Peripheral blood mononuclear cells | New York Blood Center | PBMCs were isolated from the blood of healthy donors | |
12-well tissue culture plates | Sigma-Aldrich | 3516 | |
96-well round bottom tissue culture plates | Sigma-Aldrich | 3799 | |
α-IL-1β-FITC | R&D | IC201F | |
FITC isotype control | Miltenyi Biotec | 130-092-213 | |
α-β-Tubulin | Santa Cruz | SC-9014 | |
α-IL-1β | R&D | mab201 | |
PVDF Immobilon-FL membrane | Millipore | IPFL00010 | |
gradient 4-12 % polycrylamide gel | Bio Rad | 161-1159 | |
laemmli sample buffer | Bio Rad | 161-0737 | |
BSA | Equitech Bio Inc | 30% solution sterile/filtered | |
PFA | Electron Microscopy Sciences | 15710 | 16% solution |
human inflammatory cytokine bead array kit | BD | 551811 | |
nigericin | Invivogen | tlrl-nig | |
R848 | 3M Corp. | ||
α-CD14 | BD | 340436 | |
α-CD11c | BD | 555392 | |
β-mercaptoethanol | Sigma-Aldrich | M6250-10ML | |
TBS | On site stock room | ||
Tween-20 | Sigma-Aldrich | P2287-100mL | |
Nunc EasYFlask 225cm2, Filter Cap, 70mL working volume, 30/Cs | Thermo Scientific | 159933 | |
20 μM Sterile Disposable Filter Units | Thermo Scientific | 569-0020 | |
Gentamicin | Invitrogen | 15750060 | |
Hepes | Invitrogen | 15630080 | |
goat α-mouse IRDye 800CW | Licor | 926-32210 | |
donkey α-rabbit IRDye 680RD | Licor | 926-68073 | |
Spectra multicolor broad range protein ladder | Thermo Scientific | 26634 | |
Tris Glycine SDS 10x | Bio Rad | 1610732 | |
Tris Glycine 10x | Bio Rad | 161-0734 | |
Methanol – 4L | Fisher Scientific | A433P-4 | |
Prolong Gold antifade Reagent with DAPI | Life Technologies | P-36931 | |
8 chamber polystyrene vessel tissue culture treated glass slide | BD Falcon | 354108 | |
Poly-L-Lysine | Sigma | P4707 |