Summary

Выбор Аптамеры для β-амилоида белка, возбудитель болезни Альцгеймера

Published: May 13, 2010
doi:

Summary

Аптамеры короткие ribo-/deoxyribo-oligonucleotides выбран<em> В пробирке</em> Эволюции методов, основанных на сродством к конкретной цели. Аптамеры молекулярные инструменты признания с универсальным терапевтических, диагностических и исследовательских целях. Мы демонстрируем методы отбора аптамеров для амилоидных β-белок, возбудитель болезни Альцгеймера.

Abstract

Alzheimer’s disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult1. Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies2,3.

Amyloid β-protein (Aβ) is central to AD pathogenesis. Soluble, oligomeric Aβ assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD4,5. Various forms of soluble Aβ assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood6. Specific molecular recognition tools may unravel the relationships amongst Aβ assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies7,8. Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)9,10. SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes).

Despite emergence of aptamers as tools in modern biotechnology and medicine11, they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)12-16. An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-β17, a soluble, oligomeric, β-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils18. Aptamers generated using monomeric and several forms of fibrillar β2-microglobulin (β2m) were found to bind fibrils of certain other amyloidogenic proteins besides β2m fibrils19. Ylera et al. described RNA aptamers selected against immobilized monomeric Aβ4020. Unexpectedly, these aptamers bound fibrillar Aβ40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Aβ4021 generated using photo-induced cross-linking of unmodified proteins (PICUP)22,23. Similar to previous findings17,19,20, these aptamers reacted with fibrils of Aβ and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope21. Here, we present the SELEX methodology used in production of these aptamers21.

Protocol

Часть 1: подготовка Белок и сшивания Первоначально, белка, используемого для SELEX предварительно обрабатывается с 1,1,1,3,3,3-гексафтор-2-пропанол (HFIP), чтобы получить однородную, совокупный без подготовки, как описано выше 23. Этот шаг необходим, потому что предварительно с…

Discussion

Отправной точкой процесса SELEX является синтез случайных библиотеки олигонуклеотидных обычно содержащих 10 12 -10 15 последовательностей. В ДНК SELEX, эта библиотека используется непосредственно после бассейна оцДНК создается, тогда как в РНК SELEX, продемонстрировали здесь, в библ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана грантами AG030709 из NIH / НИА и 07-65798 от Калифорнийского департамента здравоохранения. Мы признаем, Маргарет М. Кондрон для синтеза пептидов и аминокислотного анализа, доктор Элизабет Ф. Нейфельд для оказания помощи и поддержки начальных этапов проекта, доктор Чи-Хун Б. Чена за оказание поддержки и реагентов, а также д-р Эндрю D . Эллингтона за полезные обсуждения.

Materials

Material Name Type Company Catalogue Number Comment
Aβ40   UCLA Biopolymers Laboratory   Lyophilized powder
MX5 Automated-S Microbalance   Mettler Toledo    
Silicon-coated, 1.6-ml tubes   Denville Scientific C19033 or C19035  
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)   TCI America H0424 Use in a fume hood.
Ammonium persulfate   Sigma A-7460 Vortex until the solution is clear. APS is prepared freshly each time and should be used within 48 h.
Tris(2,2-bipridyl)dichlororuthenium(II) hexahydrate   Sigma 224758-1G Vortex until the solution is clear. Cover the RuBpy tube with foil to protect the reagent from ambient light. RuBpy is prepared freshly each time and should be used within 48 h.
Dithiothreitol (DTT)   Sigma 43815  
D-Salt™ Excellulose™ desalting columns   Thermo Scientific 20449  
Ammonium acetate   Fisher Scientific A637-500  
Silicon-coated, 0.6-ml tubes   Denville Scientific C19063  
Novex Tricine Gels (10–20%)   Invitrogen EC6625B0X 10-well; mini size (8 cm X 8 cm); 25 μl loading volume per well; separation range 5 kDa to 40 kDa
Quartz cuvette   Hellma 105.250-QS  
Beckman DU 640 spectrophotometer   Beckman    
ssDNA library   Integrated DNA Technologies Custom-ordered The library was designed to contain 49 random nucleotides flanked by two constant regions containing primer-binding and cloning sites: 5′-TAA TAC GAC TCA CTA TAG GGA ATT CCG CGT GTG C (N:25:25:25:25%) (N)49 G TCC GTT CGG GAT CCT C-3′
Taq DNA polymerase   USB Corporation 71160 Recombinant Thermus aquaticus DNA Polymerase supplied with 10× PCR Buffer and a separate tube of 25 mM MgCl2 for routine PCR.
PCR Nucleotide Mix, 10 mM solution   USB Corporation 77212 (10 mM each dATP, dCTP, dGTP, dTTP)
Forward primer   Integrated DNA Technologies Custom-ordered 5′-TAA TAC GAC TCA CTA TAG GGA ATT CCG CGT GTG C-3′
Reverse primer   Integrated DNA Technologies Custom-ordered 5′-GAG GAT CCC GAA CGG AC-3′
Thermal cycler   Denville Scientific Techne TC-312  
QIAquick PCR Purification Kit (50)   QIAGEN 28104  
Agarose   Denville Scientific CA3510-8  
Conical, sterile 1.6-ml tubes with caps attached with O-rings   Denville Scientific C19040-S  
RiboMAX™ Large Scale RNA Production System–T7   Promega P1300 The kit contains: 120 μl Enzyme Mix (RNA polymerase, recombinant RNasin® ribonuclease inhibitor and recombinant inorganic pyrophosphatase); 240 μl transcription 5 buffer; 100 μl each of 4 rNTPs, 100 mM; 110 U RQ1 RNase-free DNase, 1 U/μl; 10 μl linear control DNA, 1 mg/ml; 1 ml 3M sodium acetate (pH 5.2); 1.25 ml nuclease-Free water
α-32P-cytidine 5′-triphosphate, 250 μCi (9.25 MBq),   Perkin Elmer BLU008H250UC Specific Activity: 3000 Ci (111 TBq)/mmol, 50 mM Tricine (pH 7.6)
Citrate-saturated phenol:chloroform:isoamyl alcohol (125:24:1, pH 4.7)   Sigma (Fluka) 77619  
Chloroform:Isoamyl alcohol (24:1)   Sigma C0549  
Absolute ethanol for molecular biology   Sigma E7023  
Z216-MK refrigerated microcentrifuge   Denville Scientific C0216-MK  
illustra ProbeQuant™ G-50 Micro Columns   GE Healthcare Obtained from Fisher Scientific (45-001-487) Prepacked with Sephadex™ G-50 DNA Grade and pre-equilibrated in STE buffer containing 0.15% Kathon as Biocide
Triathler Bench-top Scintillation counter   Hidex Oy, Turku, Finland Triathler LSC Model: 425-034  
Novex® TBE-Urea Sample Buffer (2×)   Invitrogen LC6876  
6% TBE-Urea Gels 1.0 mm, 10 wells   Invitrogen EC6865BOX  
Novex® TBE Running Buffer (5×)   Invitrogen LC6675  
Radioactivity decontaminant   Fisher Scientific 04-355-67  
Gel-loading tips   Denville Scientific P3080  
XCell SureLock Mini-Cell   Invitrogen EI0001 XCell SureLock Mini-Cell
Autoradiography film   Denville Scientific E3018 Use in complete darkness
Autoradiography film, Hyperfilm™ ECL   Amersham Biosciences RPN3114K Can be used under red safe light.
Membrane discs   Millipore GSWP02500 Mixed cellulose ester, hydrophilic, 0.22-μm disc membranes
Fritted glass support base for 125-ml flask   VWR 26316-696  
Petri dishes   Fisher Scientific 08-757-11YZ  
Urea   Fisher Scientific AC32738-0050  
EDTA   Fisher Scientific 118430010  
Glycogen   Sigma G1767  
2-Propanol for molecular biology   Sigma I9516  
Recombinant RNase inhibitor   USB Corporation 71571  
ImProm-II™Reverse Transcription System   Promega A3802  
Recombinant RNase inhibitor   USB Corporation 71571  
RapidRun™ Loading Dye   USB Corporation 77524  

References

  1. Monien, B. H., Apostolova, L. G., Bitan, G. Early diagnostics and therapeutics for Alzheimer’s disease-how early can we get there. Expert. Rev. Neurother. 6, 1293-1306 (2006).
  2. Nestor, P. J., Scheltens, P., Hodges, J. R. Advances in the early detection of Alzheimer’s disease. Nat. Med. 10, S34-S41 (2004).
  3. Kawas, C. H. Clinical practice. Early Alzheimer’s disease. N. Engl. J. Med. 349, 1056-1063 (2003).
  4. Haass, C., Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101-112 (2007).
  5. Kirkitadze, M. D., Bitan, G., Teplow, D. B. Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567-577 (2002).
  6. Rahimi, F., Shanmugam, A., Bitan, G. Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr. Alzheimer Res. 5, 319-341 (2008).
  7. Jayasena, S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650 (1999).
  8. Bunka, D. H., Stockley, P. G. Aptamers come of age – at last. Nat. Rev. Microbiol. 4, 588-596 (2006).
  9. Ellington, A. D., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818-822 (1990).
  10. Tuerk, C., Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249, 505-510 (1990).
  11. Lee, J. F., Stovall, G. M., Ellington, A. D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282-289 (2006).
  12. Weiss, S. RNA aptamers specifically interact with the prion protein PrP. J. Virol. 71, 8790-8797 (1997).
  13. Bibby, D. F. Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J. Virol. Methods. 151, 107-115 (2008).
  14. Rhie, A. Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J. Biol. Chem. 278, 39697-39705 (2003).
  15. King, D. J., Safar, J. G., Legname, G., Prusiner, S. B. Thioaptamer interactions with prion proteins: sequence-specific and non-specific binding sites. J. Mol. Biol. 369, 1001-1014 (2007).
  16. Proske, D. Prion-protein-specific aptamer reduces PrPSc formation. ChemBioChem. 3, 717-725 (2002).
  17. Murakami, K., Nishikawa, F., Noda, K., Yokoyama, T., Nishikawa, S. Anti-bovine prion protein RNA aptamer containing tandem GGA repeat interacts both with recombinant bovine prion protein and its β isoform with high affinity. Prion. 2, 73-80 (2008).
  18. Luhrs, T., Zahn, R., Wuthrich, K. Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions. J. Mol. Biol. 357, 833-841 (2006).
  19. Bunka, D. H. Production and characterization of RNA aptamers specific for amyloid fibril epitopes. J. Biol. Chem. 282, 34500-34509 (2007).
  20. Ylera, F., Lurz, R., Erdmann, V. A., Furste, J. P. Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem. Biophys. Res. Commun. 290, 1583-1588 (2002).
  21. Rahimi, F., Murakami, K., Summers, J. L., Chen, C. H., Bitan, G. RNA aptamers generated against oligomeric Aβ40 recognize common amyloid aptatopes with low specificity but high sensitivity. PLoS ONE. 4, e7694-e7694 (2009).
  22. Bitan, G., Lomakin, A., Teplow, D. B. Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276, 35176-35184 (2001).
  23. Rahimi, F., Maiti, P., Bitan, G. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp. , (2009).
  24. Bitan, G., Fradinger, E. A., Spring, S. M., Teplow, D. B. Neurotoxic protein oligomers-what you see is not always what you get. Amyloid. 12, 88-95 (2005).
  25. Bitan, G. Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol. 413, 217-236 (2006).
  26. Chen, C. H., Chernis, G. A., Hoang, V. Q., Landgraf, R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA. 100, 9226-9231 (2003).
  27. Adams, D. S. . Lab math: a handbook of measurements, calculations, and other quantitative skills for use at the bench. , (2003).
  28. Gopinath, S. C. Methods developed for SELEX. Anal. Bioanal. Chem. 387, 171-182 (2007).
  29. Takahashi, T., Tada, K., Mihara, H. RNA aptamers selected against amyloid β-peptide (Aβ) inhibit the aggregation of Aβ. Mol. Biosyst. 5, 986-991 (2009).

Play Video

Cite This Article
Rahimi, F., Bitan, G. Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease. J. Vis. Exp. (39), e1955, doi:10.3791/1955 (2010).

View Video