Summary

肾小球的分离及肾小球细胞表面蛋白的活体标记

Published: January 18, 2019
doi:

Summary

在这里, 我们提出了一个协议的小鼠体内标记肾小球细胞表面蛋白与生物素.该协议包含有关如何灌注小鼠肾脏, 分离肾小球, 并执行内源性免疫沉淀的感兴趣的蛋白质的信息。

Abstract

蛋白尿是由被过滤的内皮细胞、肾小球基底膜和带缝隙膜片组成的肾小球滤池的破坏引起的。肾小球滤池的微妙结构, 特别是裂隙膜片, 依赖于不同细胞表面蛋白质的相互作用。到目前为止, 对这些细胞表面蛋白的研究仅限于体外研究或组织学分析。在这里, 我们提出了一个小鼠体内生物素化标记方法, 使我们能够研究肾小球细胞表面蛋白在生理和病理生理条件下。该协议包含有关如何灌注小鼠肾脏, 分离肾小球, 并执行内源性免疫沉淀的感兴趣的蛋白质的信息。这种新方法可以对肾小球细胞表面丰度进行半定量, 并可研究生物素灌注和免疫沉淀所能获得的所有蛋白质。此外, 通过在生物素化或不生物素化的情况下分离肾小球, 可以进一步分析肾小球 rna 和蛋白质以及原代肾小球细胞培养 (原代肾小球细胞培养)。

Introduction

蛋白尿是肾小球损伤的标志, 通常伴随肾小球滤池 1的破坏。肾小球滤池由被过滤的内皮细胞、肾小球基底膜和足细胞组成。肾小球滤池的微妙分子结构是高度动态的, 在健康和患病的肾脏2,3,4, 5, 6 都容易发生细胞表面蛋白贩运.细胞表面蛋白的内分泌已被证明是至关重要的生存的足细胞7。肾素和足苷酸是在足细胞上表达的跨膜蛋白。肾素是肾小球裂隙膜片的主干, 而 podocalyxin 是一种四聚糖蛋白, 包覆于足部 8910 的次生足部过程。此前, 已经显示肾素和 podocalyxin3111213、14的内分泌贩运。

据我们所知, 细胞表面蛋白的内吞尚未在肾小球内皮细胞中被描述在文献中。然而, 内皮细胞一般表达所有必要的蛋白质为不同类型的内吞 (即, clathrin 依赖, 流依赖性内吞)15,16。因此, 可以用这种方法研究内皮细胞表面的移植, 例如, 使用血管内皮 (ve)-钙粘蛋白和细胞内粘附分子 (icam-2) 作为肾小球内皮细胞17的细胞表面标记蛋白.

遗憾的是, 对于可以研究细胞表面蛋白质贩运的精细三层肾小球滤池, 目前还没有准确的体外模型。因此, 这种方法的目的是研究体内肾小球蛋白贩运。此外, 该协议还包含有关如何分离肾小球的信息, 从而能够进一步分析肾小球 rna、蛋白质或细胞。不同的组 18,19描述了类似的肾小球分离技术。

此前, 我们和其他人使用了生物素化2342021对肾小球细胞表面蛋白进行外标记。然而, 在这种体外方法中, 孤立的肾小球暴露在机械应力下, 这可能会影响细胞内贩运。另外, 肾小球细胞表面蛋白的免疫荧光标记已被广泛应用于文献22022.然而, 使用这种方法, 只有少量的蛋白质可以在一张幻灯片内进行分析, 并且免疫荧光图像的定量往往是困难的。

这种新的体内方法为研究健康和患病肾脏中肾小球细胞表面蛋白质丰度和贩运提供了可靠的工具, 可作为免疫荧光检测的补充。

Protocol

老鼠是从当地动物护理设施或法国 janvier 实验室获得的, 作为一种内部品种。调查是根据《实验动物护理和使用指南》 (美国国立卫生研究院85-23 出版物, 1996年修订) 中概述的准则进行的。所有动物实验都是按照相关机构批准进行的 (州政府 lanuv 参考编号 az:84-02.0 04)。2016. a435)。 1. 仪器、解决方案和设备的准备 制备1升磷酸盐缓冲盐水, 辅以 1 mm 氯化镁 (mgcl 2)和 0…

Representative Results

为了准确地分离肾小球, 必须先用 pbscm 灌注小鼠肾脏。pbscm 灌注使肾脏变白 (图 1a)。用磁珠栓塞肾小球将可见于肾脏表面的棕色圆点 (图 1b)。用捕磁器分离肾小球可能显示肾小管污染 (图 1c)。在进一步分析肾小球之前, 需要通过更彻底地清洗肾小球来达到 > 95% 的肾小?…

Discussion

该方法可以成功地分离肾小球, 以研究肾小球 rna 或蛋白质。此外, 原代肾小球细胞培养可以从分离的肾小球进行。如果生物素是在肾小球分离之前应用的, 则可以对肾小球细胞表面蛋白进行标记。利用该方法可以研究体内肾小球细胞表面蛋白的贩运, 并可对蛋白质丰度进行半定量。成功检测肾小球细胞表面蛋白丰度的最关键步骤是: 1) 发展小鼠手术方面的手工专业知识, 特别是主动脉插管, 2) …

Disclosures

The authors have nothing to disclose.

Acknowledgements

提交人感谢 blanka duvnjak 的出色技术援助。这项工作得到了德国妇女组织 (www.dfg.de) w1811\ 2-1 至 m. w. 和 qu2803-1 至智商的支持。资助者在研究设计、数据收集、数据分析、出版决定和手稿准备方面没有任何作用。

Materials

Motic SMZ168 BL Motic SMZ168BL microscope for mouse surgery
KL1500LCD Pulch and Lorenz microscopy 150500 light for mouse surgery
Rompun (Xylazin) 2% Bayer PZN:01320422 anesthesia
Microfederschere Braun, Aesculap FD100R fine scissors, for cut into the aorta
Durotip Feine Scheren Braun, Aesculap BC210R for abdominal cut
Anatomische Pinzette Braun, Aesculap BD215R for surgery until the abdomen is opened
Präparierklemme Aesculap BJ008R for surgery 
Seraflex Serag Wiessner IC108000 silk thread
Ketamine 10% Medistar anesthesia
Rompun (Xylazin) 2% Bayer anesthesia
Fine Bore Polythene Tubing ID 0.28mm OD 0.61mm Portex 800/100/100 Catheter
Fine Bore Polythene Tubing ID 0.58mm OD 0.96mm Portex 800/100/200 Catheter
Harvard apparatus 11 Plus Harvard Apparatus 70-2209 syringe pump
EZ-link Sulfo-NHC-LC-Biotin Thermo Scientific 21335 biotin
Dynabeads Untouched Mouse T-cells Invitrogen 11413D to embolize glomeruli
Collagenase A Roche 10103578001 to digest kidney tissue
DynaMag-2 Invitrogen 123.21D Magnet catcher
100µm cell stainer Greiner-bio 542000 for glomerular isolation
Axiovert 40 CFL Zeiss non available to confirm glomerular purity
TissueRuptor Quiagen 9002755 Tissue homogenizer
CHAPS Sigma-Aldrich C3023 for lysis buffer
Tris-HCL Sigma-Aldrich T5941 for lysis buffer
NaCl VWR chemicals 27810295 for lysis buffer
NaF Sigma-Aldrich 201154 for lysis buffer
EDTA Sigma-Aldrich E5134 for lysis buffer
ATP Sigma-Aldrich 34369-07-8 for lysis buffer
Pierce BCA Protein Assay Kit Thermo Scientific 23225 Follow the manufacturer's instructions
nephrin antibody Progen GP-N2 for westernblot
Polyclonal goat anti-podocalyxin antibody R&D Systems AF15556-SP for westernblot
Streptavidin Agarose Resin Thermo Scientific 20347 for immunoprecipitation
Protein A sepharose CL-4B GE Healthcare 17096303 for immunoprecipitation
polyclonal rabbit anti-p57 antibody SCBT sc-8298 for Immunohistochemistry
mouse monoclonal anti-beta actin antibody, clone AC-74 Sigma-Aldrich A2228 Western blot loading control
rabbit anti-p44/42 cell signalling 4695 for westernblot
Pierce High sensitivity streptavidin-HRP Thermo Scientific 21130 for westernblot
polyclonal mouse ICAM-2 antibody R&D Systems AF774 for westernblot
polyclonal mouse anti-VE-cadherin R&D Systems AF1002 for westernblot

References

  1. Jefferson, J. A., Alpers, C. E., Shankland, S. J. Podocyte biology for the bedside. American Journal of Kidney Disease. 58 (5), 835-845 (2011).
  2. Konigshausen, E., et al. Angiotensin II increases glomerular permeability by beta-arrestin mediated nephrin endocytosis. Scientific Reports. 6, 39513 (2016).
  3. Quack, I., et al. beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proceedings of the National Academy of Science of the United States of America. 103 (38), 14110-14115 (2006).
  4. Quack, I., et al. PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. Journal of Biological Chemitry. 286 (15), 12959-12970 (2011).
  5. Swiatecka-Urban, A. Endocytic Trafficking at the Mature Podocyte Slit Diaphragm. Frontiers in Pediatrics. 5, 32 (2017).
  6. Swiatecka-Urban, A. Membrane trafficking in podocyte health and disease. Pediatric Nephrology. 28 (9), 1723-1737 (2013).
  7. Soda, K., et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. The Journal of Clinical Investigation. 122 (12), 4401-4411 (2012).
  8. Kestila, M., et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Molecular Cell. 1 (4), 575-582 (1998).
  9. Martin, C. E., Jones, N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Frontiers in Endocrinology (Lausanne). 9, 302 (2018).
  10. Nielsen, J. S., McNagny, K. M. The role of podocalyxin in health and disease. Journal of the American Society of Nephrology. 20 (8), 1669-1676 (2009).
  11. Yasuda, T., Saegusa, C., Kamakura, S., Sumimoto, H., Fukuda, M. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Molecular Biology of the Cell. 23 (16), 3229-3239 (2012).
  12. Tossidou, I., et al. Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis. Public Library of Science One. 5 (4), 10185 (2010).
  13. Qin, X. S., et al. Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. Journal of the American Society of Nephrology. 20 (12), 2534-2545 (2009).
  14. Waters, A. M., et al. Notch promotes dynamin-dependent endocytosis of nephrin. Journal of the American Society of Nephrology. 23 (1), 27-35 (2012).
  15. Zhang, X., Simons, M. Receptor tyrosine kinases endocytosis in endothelium: biology and signaling. Arteriosclerosis Thrombosis and Vascular Biology. 34 (9), 1831-1837 (2014).
  16. Maes, H., Olmeda, D., Soengas, M. S., Agostinis, P. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. Federation of European Biochemical Societies Journal. 283 (1), 25-38 (2016).
  17. Satchell, S. C., et al. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF. Kidney International. 69 (9), 1633-1640 (2006).
  18. Takemoto, M., et al. A new method for large scale isolation of kidney glomeruli from mice. American Journal of Pathology. 161 (3), 799-805 (2002).
  19. Liu, X., et al. Isolating glomeruli from mice: A practical approach for beginners. Experimental and Therapeutic Medicine. 5 (5), 1322-1326 (2013).
  20. Haase, R., et al. A novel in vivo method to quantify slit diaphragm protein abundance in murine proteinuric kidney disease. Public Library of Science One. 12 (6), 0179217 (2017).
  21. Satoh, D., et al. aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. Journal of Biochemistry. 156 (2), 115-128 (2014).
  22. Tomas, N. M., et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. New England Journal of Medicine. 371 (24), 2277-2287 (2014).
  23. Daniels, G. M., Amara, S. G. Selective labeling of neurotransmitter transporters at the cell surface. Methods in Enzymology. 296, 307-318 (1998).
  24. Ougaard, M. K. E., et al. Murine Nephrotoxic Nephritis as a Model of Chronic Kidney Disease. International Journal of Nephrology. 2018, 8424502 (2018).
  25. Salant, D. J., Darby, C., Couser, W. G. Experimental membranous glomerulonephritis in rats. Quantitative studies of glomerular immune deposit formation in isolated glomeruli and whole animals. Journal of Clinical Investigation. 66 (1), 71-81 (1980).

Play Video

Cite This Article
Königshausen, E., Potthoff, S. A., Haase, R., Meyer-Schwesinger, C., Kaufmann, E., Rump, L. C., Stegbauer, J., Sellin, L., Quack, I., Woznowski, M. Isolation of Glomeruli and In Vivo Labeling of Glomerular Cell Surface Proteins. J. Vis. Exp. (143), e58542, doi:10.3791/58542 (2019).

View Video